!----------------------------------------------------------------------------------------------------------------------------------- ! This file is part of ReMKiT1D. ! ! ReMKiT1D is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as ! published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ! ! ReMKiT1D is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ReMKiT1D. If not, see <https://www.gnu.org/licenses/>. ! ! Copyright 2023 United Kingdom Atomic Energy Authority (stefan.mijin@ukaea.uk) !----------------------------------------------------------------------------------------------------------------------------------- submodule (physics_functions) physics_functions_procedures !! author: Stefan Mijin !! !! Contains the implementations of various physics routines implicit none !----------------------------------------------------------------------------------------------------------------------------------- contains !----------------------------------------------------------------------------------------------------------------------------------- pure module function logLee(Te,ne) result(res) !! Calculate Coulomb logarithm for electron-electron collisions (NRL Formulary 2013 page 34 equation a) real(rk) ,intent(in) :: Te !! Electron temperature in eV real(rk) ,intent(in) :: ne !! Electron density in m^{-3} real(rk) :: res res = real(23.5d0 - log(sqrt(ne * 1.00D-6) * Te**(-5.0d0/4.0d0)) - sqrt(1.0d-5 + (log(Te)-2.0d0)**2/16.0d0),kind=rk) end function logLee !----------------------------------------------------------------------------------------------------------------------------------- pure module function logLei(Te,ne,Z,removeDisc) result(res) !! Calculate Coulomb logarithm for electron-ion collisions (NRL Formulary 2013 page 34 equation b). Assumes Te > TiZm_e/m_i real(rk) ,intent(in) :: Te !! Electron temperature in eV real(rk) ,intent(in) :: ne !! Electron density in m^{-3} real(rk) ,intent(in) :: Z !! Ion charge logical ,intent(in), optional :: removeDisc !! Remove the discontinuity at 10eV by moving the branch switch to Te = Z **2 * e**2 eV. Defaults to .false. real(rk) :: res real(rk) :: cutoff cutoff = 10*Z**2 if (present(removeDisc)) then if (removeDisc) cutoff = exp(real(2,kind=rk))*Z**2 end if if (Te < cutoff) then res = real(23.0d0 - log(sqrt(ne * 1.00D-6) * Z * Te ** (-3.0d0/2.0d0)),kind=rk) else res = real(24.0d0 - log(sqrt(ne * 1.00D-6) / Te ),kind=rk) end if end function logLei !----------------------------------------------------------------------------------------------------------------------------------- pure module function logLii(Z1,Z2,mRatio,n1,n2,T1,T2) result(res) !! Calculate Coulomb logarithm for ion-ion collisions (NRL Formulary 2013 page 34 equation c). real(rk) ,intent(in) :: Z1 !! Ion charge for first species real(rk) ,intent(in) :: Z2 !! Ion charge for second species real(rk) ,intent(in) :: mRatio !! Mass ratio m2/m1 real(rk) ,intent(in) :: n1 !! First ion species density in m^{-3} real(rk) ,intent(in) :: n2 !! Second ion species density in m^{-3} real(rk) ,intent(in) :: T1 !! First ion temperature in eV real(rk) ,intent(in) :: T2 !! Second ion temperature in eV real(rk) :: res res = real(23.0d0 - log(Z1 * Z2 * (1.0d0 + mRatio)*sqrt(n1 * 1.00D-6 * Z1**2/T1 + n2 * 1.00D-6 * Z2**2/T2)/(T2 + mRatio * T1)),& kind=rk) end function logLii !----------------------------------------------------------------------------------------------------------------------------------- pure module function shPotDrop(massRatio,tempRatio) result(res) !! Calculate sheath potential drop for 2 component plasma in units of kTe/e real(rk) ,intent(in) :: massRatio !! Mass ratio me/mi real(rk) ,intent(in) :: tempRatio !! Ion to electron temperature ratio real(rk) :: res res = real(0.5d0*log(2*pi*massRatio*(1.0d0+tempRatio)),kind=rk) end function shPotDrop !----------------------------------------------------------------------------------------------------------------------------------- pure module function collTimeei(Te,ne,Z,logL) result(res) !! Calculate electron-ion collision time in seconds. This is not the Braginskii time, which can be calculated as this value !! multiplied by 3 sqrt(pi)/4 . real(rk) ,intent(in) :: Te !! Electron temperature in eV real(rk) ,intent(in) :: ne !! Electron density in m^{-3} real(rk) ,intent(in) :: Z !! Ion charge real(rk) ,intent(in) :: logL !! Coulomb logarithm to be used real(rk) :: res res = real(4*pi * epsilon0 ** 2 * sqrt(elMass/elCharge) * (2.0d0*Te) ** (3.0d0/2.0d0) /(Z * logL * ne * elCharge ** 2),kind=rk) end function collTimeei !----------------------------------------------------------------------------------------------------------------------------------- pure module function elPlasmaOscFreq(ne) result(res) !! Calculate cold electron plasma oscillation frequency in s^{-1} real(rk) ,intent(in) :: ne !! Electron density in m^{-3} real(rk) :: res res = real(sqrt(ne * elCharge**2/(elMass * epsilon0)),kind=rk) end function elPlasmaOscFreq !----------------------------------------------------------------------------------------------------------------------------------- pure module function elVthermal(Te) result(res) !! Mean thermal electron speed real(rk) ,intent(in) :: Te !! Electron temperature in eV real(rk) :: res res = real(sqrt(2*elCharge*Te/elMass),kind=rk) end function elVthermal !----------------------------------------------------------------------------------------------------------------------------------- pure module function vSonic(Te,Ti,mi,ePolytropic,iPolytropic) result(res) !! Sonic speed caclulated as sqrt((ePoly*Te + iPoly*Ti)/mi) real(rk) ,intent(in) :: Te !! Electron temperature in eV real(rk) ,intent(in) :: Ti !! Ion temperature in eV real(rk) ,intent(in) :: mi !! Ion mass real(rk) ,intent(in) :: ePolytropic !! Electron polytropic coefficient real(rk) ,intent(in) :: iPolytropic !! Ion polytropic coefficient real(rk) :: res res = real(sqrt(elCharge * (ePolytropic*Te + iPolytropic*Ti) / mi),kind=rk) end function vSonic !----------------------------------------------------------------------------------------------------------------------------------- pure module function normMaxwellian(n,T,vPoints) result(res) !! Returns a normalized stationary Maxwellian evaluated at vPoints. Assumes that velocity and temperature are normalized in !! such way that m v_0^2/2 = kT_0 , and the returned value is normalized to 1/v_0^(3/2) . real(rk) ,intent(in) :: n !! Density in arbitrary units real(rk) ,intent(in) :: T !! Temperature in units compatible with velocity grid real(rk) ,dimension(:) ,intent(in) :: vPoints !! Velocity grid real(rk) ,allocatable ,dimension(:) :: res res = (pi*T) ** (-3.0d0/2.0d0) * n * exp(-vPoints**2 / T) end function normMaxwellian !----------------------------------------------------------------------------------------------------------------------------------- pure module function simpleMoment(m,f,vPoints,vWidths,g) result(res) !! Returns the m-th moment of passed distribution function harmonic - 4*pi*int(v^(2+m)*f*dv) . Optionally takes moment of f*g !! where g conforms to f. The integration is a simple Riemann sum. integer(ik) ,intent(in) :: m !! Moment degree real(rk) ,dimension(:) ,intent(in) :: f !! Distribution function to take the moment of real(rk) ,dimension(:) ,intent(in) :: vPoints !! Coordinates of cell centres in velocity space real(rk) ,dimension(:) ,intent(in) :: vWidths !! Widths of velocity space cells real(rk) ,optional ,dimension(:) ,intent(in) :: g !! Optional velocity space array to include in moment integral real(rk) :: res if (present(g)) then res = 4*pi*sum(f*g*vWidths*vPoints**(2+m)) else res = 4*pi*sum(f*vWidths*vPoints**(2+m)) end if end function simpleMoment !----------------------------------------------------------------------------------------------------------------------------------- end submodule physics_functions_procedures !-----------------------------------------------------------------------------------------------------------------------------------