!pip install pandas matplotlib zarr fsspec s3fs intake intake_xarray intake_parquet
Show code cell output Hide code cell output
Requirement already satisfied: pandas in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.3)
Requirement already satisfied: matplotlib in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (3.9.0)
Requirement already satisfied: zarr in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.15.0)
Requirement already satisfied: fsspec in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: s3fs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: intake in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.5)
Requirement already satisfied: intake_xarray in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.7.0)
Requirement already satisfied: intake_parquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.3.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (1.25.2)
Requirement already satisfied: contourpy>=1.0.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: asciitree in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.3.3)
Requirement already satisfied: fasteners in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.19)
Requirement already satisfied: numcodecs>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.12.1)
Requirement already satisfied: aiobotocore<3.0.0,>=2.5.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (2.13.0)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (3.9.5)
Requirement already satisfied: pyyaml in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (6.0.1)
Requirement already satisfied: appdirs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (1.4.4)
Requirement already satisfied: xarray>=02022 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2023.7.0)
Requirement already satisfied: dask>=2.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2024.4.1)
Requirement already satisfied: netcdf4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.6.4)
Requirement already satisfied: msgpack in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.0.8)
Requirement already satisfied: requests in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2.31.0)
Requirement already satisfied: fastparquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (2024.11.0)
Requirement already satisfied: pyarrow in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (12.0.1)
Requirement already satisfied: botocore<1.34.107,>=1.34.70 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.34.106)
Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.16.0)
Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (0.11.0)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (23.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.9.4)
Requirement already satisfied: click>=8.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (8.1.5)
Requirement already satisfied: cloudpickle>=1.5.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (3.0.0)
Requirement already satisfied: partd>=1.2.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (1.4.2)
Requirement already satisfied: toolz>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (0.12.1)
Requirement already satisfied: importlib-metadata>=4.13.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (7.1.0)
Requirement already satisfied: six>=1.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: cramjam>=2.3 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from fastparquet->intake_parquet) (2.9.0)
Requirement already satisfied: cftime in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (1.6.3)
Requirement already satisfied: certifi in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (2024.2.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (2.2.1)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (1.0.1)
Requirement already satisfied: zipp>=0.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from importlib-metadata>=4.13.0->dask>=2.2->intake_xarray) (3.18.1)
Requirement already satisfied: locket in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from partd>=1.2.0->dask>=2.2->intake_xarray) (1.0.0)
import intake
import pandas as pd
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
plt.rcParams["font.family"] = "sans"
plt.rcParams["font.size"] = 8
Data Gallery#
This notebook contains example plots of data from different diagnostics as a demonstration of what sort data is available in the archive.
First we need to find the url to a particular shot. Here we are going to use shot 30420 as an example.
shot_id = 30420
catalog = intake.open_catalog('https://mastapp.site/intake/catalog.yml')
shot_df = pd.DataFrame(catalog.index.level1.shots().read())
url = shot_df.loc[shot_df.shot_id == shot_id].iloc[0].url
Plasma Current Data#
Data from the amc
source contains
Plasma Current (\(I_p\)): Flows within the plasma, providing initial heating and contributing to the poloidal magnetic field for confinement and stability.
PF Coil Currents: Control the poloidal magnetic field, allowing for plasma shaping, vertical stability, and edge magnetic configuration control.
TF Coil Currents: Generate the strong toroidal magnetic field necessary for primary plasma confinement.
dataset = catalog.level1.shots(url=url, group='amc')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 30000) Coordinates: * time (time) float32 -2.0 -2.0 -2.0 -1.999 ... 3.999 4.0 4.0 Data variables: (12/46) efps_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> error_field_02 (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> error_field_05 (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> p2il_coil_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> p2il_feed_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> p2iu_coil_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> ... ... p6u_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> plasma_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> sol_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> status float32 ... tf_current (time) float32 dask.array<chunksize=(30000,), meta=np.ndarray> version float32 ... Attributes: description: Plasma Current and PF/TF Coil Currents file_name: amc0304.20 format: IDA3 mds_name: None name: amc quality: Not Checked shot_id: 30420 signal_type: Analysed source: amc uda_name: AMC uuid: 01aad0c4-2a84-59e2-8b1b-168b4bd66aa3 version: 0
- time: 30000
- time(time)float32-2.0 -2.0 -2.0 ... 3.999 4.0 4.0
- units :
- s
array([-2. , -1.9998 , -1.9996 , ..., 3.999399, 3.9996 , 3.999799], dtype=float32)
- efps_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- EFPS current measured at input to P2 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- EFPS Current
- mds_name :
- \TOP.ANALYSED.AMC:EFPS_CURRENT
- name :
- amc/efps_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_EFPS CURRENT
- units :
- kA
- uuid :
- 184cb059-3b20-5ff2-87fb-959ce07c42d0
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - error_field_02(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Error Field/02
- mds_name :
- \TOP.ANALYSED.AMC.ERROR_FIELD:02
- name :
- amc/error_field_02
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_ERROR FIELD/02
- units :
- kA * turn
- uuid :
- a48b22d3-dc5b-57cc-805b-e2875e4b4783
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - error_field_05(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Error Field/05
- mds_name :
- \TOP.ANALYSED.AMC.ERROR_FIELD:05
- name :
- amc/error_field_05
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_ERROR FIELD/05
- units :
- kA * turn
- uuid :
- a2a22abc-b6dd-5115-87b9-a3106ff30110
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2il_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 inner lower current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2IL Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P2IL_COIL:CURRENT
- name :
- amc/p2il_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2IL COIL CURRENT
- units :
- kA * turn
- uuid :
- 63691830-c58d-5f03-a811-5601bca0e0b9
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2il_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2L inner winding current - measured at P2 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2il Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P2IL_FEED:CURRENT
- name :
- amc/p2il_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2IL FEED CURRENT
- units :
- kA
- uuid :
- af5c935e-ce9a-5b8f-b7be-2e97726f314a
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2iu_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 inner upper feed current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2IU Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P2IU_COIL:CURRENT
- name :
- amc/p2iu_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2IU COIL CURRENT
- units :
- kA * turn
- uuid :
- 26141f74-c0b6-5718-b28f-b40765ca326e
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2iu_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2U inner winding current - measured at P2 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2iu Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P2IU_FEED:CURRENT
- name :
- amc/p2iu_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2IU FEED CURRENT
- units :
- kA
- uuid :
- 6f129101-1a1b-5d41-afa3-01b38587dafb
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2l_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 lower case current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2L Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P2L_CASE:CURRENT
- name :
- amc/p2l_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2L CASE CURRENT
- units :
- kA
- uuid :
- 99aad5b5-f691-53fb-9b50-cfca47478c1e
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2l_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P2L current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2L Current
- mds_name :
- \TOP.ANALYSED.AMC:P2L_CURRENT
- name :
- amc/p2l_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2L CURRENT
- units :
- kA * turn
- uuid :
- 48b41de3-eac6-54a2-896c-c5a3e78c176d
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2ol_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 outer lower current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2OL Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P2OL_COIL:CURRENT
- name :
- amc/p2ol_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2OL COIL CURRENT
- units :
- kA * turn
- uuid :
- 22c92239-552f-5da4-aed1-4595f9998392
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2ol_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2L outer winding current - measured at P2 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2ol Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P2OL_FEED:CURRENT
- name :
- amc/p2ol_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2OL FEED CURRENT
- units :
- kA
- uuid :
- c8485623-2746-5b7c-9a53-b0f085ff54f9
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2ou_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 outer upper feed current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2OU Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P2OU_COIL:CURRENT
- name :
- amc/p2ou_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2OU COIL CURRENT
- units :
- kA * turn
- uuid :
- f4963f6c-a084-574a-ad4e-58ab7c977b29
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2ou_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2U outer winding current - measured at P2 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2ou Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P2OU_FEED:CURRENT
- name :
- amc/p2ou_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2OU FEED CURRENT
- units :
- kA
- uuid :
- 14f2d15f-7449-5d82-9269-3543d772d2b3
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2u_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P2 upper case current (pseudo coil current signal used by EFIT)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2U Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P2U_CASE:CURRENT
- name :
- amc/p2u_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2U CASE CURRENT
- units :
- kA
- uuid :
- dc9cf0aa-73df-5b8a-ae76-28784eda0ffd
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2u_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P2U current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P2U Current
- mds_name :
- \TOP.ANALYSED.AMC:P2U_CURRENT
- name :
- amc/p2u_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P2U CURRENT
- units :
- kA * turn
- uuid :
- 1f335921-0caa-5a97-9c20-66979363b26f
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3l_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3L Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P3L_CASE:CURRENT
- name :
- amc/p3l_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3L CASE CURRENT
- units :
- kA
- uuid :
- 23c0924c-2ee4-5cc6-8e2d-03ac857efeef
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3l_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3L Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P3L_COIL:CURRENT
- name :
- amc/p3l_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3L COIL CURRENT
- units :
- kA * turn
- uuid :
- d5f3c8aa-7335-5260-92cd-0392ea4bc035
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3l_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P3L current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3L Current
- mds_name :
- \TOP.ANALYSED.AMC:P3L_CURRENT
- name :
- amc/p3l_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3L CURRENT
- units :
- kA * turn
- uuid :
- 9a9fb709-4ca7-5ccb-8697-bffe44d9583f
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3l_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3l Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P3L_FEED:CURRENT
- name :
- amc/p3l_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3L FEED CURRENT
- units :
- kA
- uuid :
- 2378bca5-a554-56b0-838e-b29f99803b2c
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3u_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3U Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P3U_CASE:CURRENT
- name :
- amc/p3u_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3U CASE CURRENT
- units :
- kA
- uuid :
- ba240fad-6013-5da0-8e24-f416ed793b94
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3u_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3U Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P3U_COIL:CURRENT
- name :
- amc/p3u_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3U COIL CURRENT
- units :
- kA * turn
- uuid :
- 3b4af51c-ed63-5349-9eed-d913f4ba2afa
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3u_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P3U current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3U Current
- mds_name :
- \TOP.ANALYSED.AMC:P3U_CURRENT
- name :
- amc/p3u_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3U CURRENT
- units :
- kA * turn
- uuid :
- 4cf1388c-8f2e-5c30-93c6-d2b7d40da40b
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p3u_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P3U winding current - measured at P3/4/5 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P3u Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P3U_FEED:CURRENT
- name :
- amc/p3u_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P3U FEED CURRENT
- units :
- kA
- uuid :
- 88fe288b-25c1-59f8-949a-a54e2cb360d7
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4l_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4L Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P4L_CASE:CURRENT
- name :
- amc/p4l_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4L CASE CURRENT
- units :
- kA
- uuid :
- a28f9810-827c-56d9-8622-7ca19671d44d
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4l_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4L Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P4L_COIL:CURRENT
- name :
- amc/p4l_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4L COIL CURRENT
- units :
- kA * turn
- uuid :
- 7ddc00ba-98cc-518e-93d9-50ba85196fc9
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4l_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P4L current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4L Current
- mds_name :
- \TOP.ANALYSED.AMC:P4L_CURRENT
- name :
- amc/p4l_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4L CURRENT
- units :
- kA * turn
- uuid :
- 12619bbb-9d72-5784-82d3-041b1a0678cc
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4l_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P4L winding current - measured at P3/4/5 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4l Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P4L_FEED:CURRENT
- name :
- amc/p4l_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4L FEED CURRENT
- units :
- kA
- uuid :
- 8cd586d7-3ee9-5eb8-b00f-e1f4431d4f27
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4u_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4U Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P4U_CASE:CURRENT
- name :
- amc/p4u_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4U CASE CURRENT
- units :
- kA
- uuid :
- bab05664-c0cf-5bbd-a0ee-2bcc19899f4a
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4u_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4U Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P4U_COIL:CURRENT
- name :
- amc/p4u_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4U COIL CURRENT
- units :
- kA * turn
- uuid :
- 83df05ea-5dd2-5d55-af2c-f6f62880f5b9
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4u_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P4U current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4U Current
- mds_name :
- \TOP.ANALYSED.AMC:P4U_CURRENT
- name :
- amc/p4u_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4U CURRENT
- units :
- kA * turn
- uuid :
- c8019ebe-400c-5846-8233-80b1d08a9e03
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p4u_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P4U winding current - measured at P3/4/5 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P4u Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P4U_FEED:CURRENT
- name :
- amc/p4u_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P4U FEED CURRENT
- units :
- kA
- uuid :
- fbfe5693-2fa1-577b-8567-76261174b0c4
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5l_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5L Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P5L_CASE:CURRENT
- name :
- amc/p5l_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5L CASE CURRENT
- units :
- kA
- uuid :
- 94e8a842-4c13-56c3-b581-1279db9762a0
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5l_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5L Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P5L_COIL:CURRENT
- name :
- amc/p5l_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5L COIL CURRENT
- units :
- kA * turn
- uuid :
- 1f786b53-7971-54ae-a013-f07405e398ca
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5l_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P5L current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5L Current
- mds_name :
- \TOP.ANALYSED.AMC:P5L_CURRENT
- name :
- amc/p5l_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5L CURRENT
- units :
- kA * turn
- uuid :
- 7f0ab6cd-61cd-502e-af7e-646dc4e7cf12
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5l_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P5L winding current - measured at P3/4/5 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5l Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P5L_FEED:CURRENT
- name :
- amc/p5l_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5L FEED CURRENT
- units :
- kA
- uuid :
- 0d4b200c-35e6-52d0-b759-297842b2dcd3
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5u_case_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5U Case Current
- mds_name :
- \TOP.ANALYSED.AMC.P5U_CASE:CURRENT
- name :
- amc/p5u_case_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5U CASE CURRENT
- units :
- kA
- uuid :
- 2b648bdd-e3a8-53b7-9b10-47cd1208bd4a
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5u_coil_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5U Coil Current
- mds_name :
- \TOP.ANALYSED.AMC.P5U_COIL:CURRENT
- name :
- amc/p5u_coil_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5U COIL CURRENT
- units :
- kA * turn
- uuid :
- 346777d8-9808-5b84-883a-5ed522a96f42
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5u_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P5U current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5U Current
- mds_name :
- \TOP.ANALYSED.AMC:P5U_CURRENT
- name :
- amc/p5u_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5U CURRENT
- units :
- kA * turn
- uuid :
- ffb66909-326a-5dd9-915c-3257b0afe32f
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p5u_feed_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P5U winding current - measured at P3/4/5 link board
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P5u Feed Current
- mds_name :
- \TOP.ANALYSED.AMC.P5U_FEED:CURRENT
- name :
- amc/p5u_feed_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P5U FEED CURRENT
- units :
- kA
- uuid :
- 919e1597-f986-5556-b427-df2dc2d6d075
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p6l_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P6L current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P6L Current
- mds_name :
- \TOP.ANALYSED.AMC:P6L_CURRENT
- name :
- amc/p6l_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P6L CURRENT
- units :
- kA * turn
- uuid :
- f2032ccb-441e-5241-9a9e-ba1d37c5f437
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p6u_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Internal P6U current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- P6U Current
- mds_name :
- \TOP.ANALYSED.AMC:P6U_CURRENT
- name :
- amc/p6u_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_P6U CURRENT
- units :
- kA * turn
- uuid :
- e48ade2b-11e4-5793-9ad0-0a754c0aa488
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- Plasma Current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Current
- mds_name :
- \TOP.ANALYSED.AMC.PLASMA:CURRENT
- name :
- amc/plasma_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_PLASMA CURRENT
- units :
- kA
- uuid :
- 6327e756-e587-5c74-8aed-4e595d3546cf
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - sol_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- P1PS - Solenoid Feed Current
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Sol Current
- mds_name :
- \TOP.ANALYSED.AMC:SOL_CURRENT
- name :
- amc/sol_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_SOL CURRENT
- units :
- kA
- uuid :
- b2b6c10b-15cf-5a15-82e8-2a53e5be144d
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - status()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AMC:STATUS
- name :
- amc/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_STATUS
- units :
- uuid :
- 19528798-cd4d-5799-90e5-528d5b275b0c
- version :
- 0
[1 values with dtype=float32]
- tf_current(time)float32dask.array<chunksize=(30000,), meta=np.ndarray>
- description :
- TF feed current measured in north duct
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- TF Current
- mds_name :
- \TOP.ANALYSED.AMC:TF_CURRENT
- name :
- amc/tf_current
- quality :
- Not Checked
- rank :
- 1
- shape :
- [30000]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_TF CURRENT
- units :
- kA
- uuid :
- 50cd98f3-8f4d-543d-be7a-bf06e87c477e
- version :
- 0
Array Chunk Bytes 117.19 kiB 117.19 kiB Shape (30000,) (30000,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - version()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AMC:VERSION
- name :
- amc/version
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- time_index :
- 0
- uda_name :
- AMC_VERSION
- units :
- uuid :
- 723bd0c7-5695-5576-8f7f-2203f6797ee4
- version :
- 0
[1 values with dtype=float32]
- timePandasIndex
PandasIndex(Index([ -2.000000238418579, -1.999800205230713, -1.9996002912521362, -1.99940025806427, -1.9992002248764038, -1.9990001916885376, -1.998800277709961, -1.9986002445220947, -1.9984002113342285, -1.9982002973556519, ... 3.997999429702759, 3.998199701309204, 3.998399496078491, 3.9985997676849365, 3.9987995624542236, 3.998999834060669, 3.999199628829956, 3.999399423599243, 3.9995996952056885, 3.9997994899749756], dtype='float32', name='time', length=30000))
- description :
- Plasma Current and PF/TF Coil Currents
- file_name :
- amc0304.20
- format :
- IDA3
- mds_name :
- None
- name :
- amc
- quality :
- Not Checked
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- amc
- uda_name :
- AMC
- uuid :
- 01aad0c4-2a84-59e2-8b1b-168b4bd66aa3
- version :
- 0
dataset = dataset.isel(time=(dataset.time > 0) & (dataset.time < .35))
fig, axes = plt.subplots(3, 1, figsize=(10, 6))
ax1, ax2, ax3 = axes.flatten()
ax1.plot(dataset['time'], dataset['plasma_current'])
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Plasma Current $I_p$ (kA)')
ax2.plot(dataset['time'], dataset['sol_current'])
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Solenoid Feed Current (kA)')
ax3.plot(dataset['time'], dataset['tf_current'])
ax3.set_xlabel('Time (s)')
ax3.set_ylabel('TF Feed Current (kA)')
for ax in axes:
ax.grid(alpha=0.3)
plt.tight_layout()
Thompson Scattering Data#
ayc
source holds the Thomspon Scattering data at the core. Thomson scattering diagnostics provide accurate measurements of electron temperature and density.
dataset = catalog.level1.shots(url=url, group='ayc')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (acqiris_time: 73, radial_index: 131, arb: 130, time: 73, spectral_index: 4, instrument_time: 20, time_segment: 73, xyc_time: 73) Coordinates: * acqiris_time (acqiris_time) float32 0.0 1.0 2.0 ... 70.0 71.0 72.0 * arb (arb) float32 0.0 1.0 2.0 3.0 ... 127.0 128.0 129.0 * instrument_time (instrument_time) float32 1.0 2.0 3.0 ... 19.0 20.0 * radial_index (radial_index) float32 0.0 1.0 2.0 ... 129.0 130.0 * spectral_index (spectral_index) float32 1.0 2.0 3.0 4.0 * time (time) float32 0.004166 0.008332 0.0125 ... 0.3 0.3042 * xyc_time (xyc_time) float32 0.0 1.0 2.0 3.0 ... 70.0 71.0 72.0 Dimensions without coordinates: time_segment Data variables: (12/36) acqiris_time_ (acqiris_time) float32 dask.array<chunksize=(73,), meta=np.ndarray> angle (radial_index) float32 dask.array<chunksize=(131,), meta=np.ndarray> aspectra (time, radial_index, spectral_index) float32 dask.array<chunksize=(73, 131, 4), meta=np.ndarray> chi2 (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray> covariance_ne_te (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray> instrument_dr (instrument_time, radial_index) float32 dask.array<chunksize=(20, 131), meta=np.ndarray> ... ... te_error (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray> version_fibre float32 ... version_poly float32 ... version_raman float32 ... xyc_time_ (xyc_time) float32 dask.array<chunksize=(73,), meta=np.ndarray> yag_nelint (time) float32 dask.array<chunksize=(73,), meta=np.ndarray> Attributes: description: Core Thomson scattering data file_name: ayc0304.20 format: IDA3 mds_name: None name: ayc quality: Not Checked shot_id: 30420 signal_type: Analysed source: ayc uda_name: AYC uuid: 8d043ece-8bf8-5af8-87e4-d2a1b01716fa version: 0
- acqiris_time: 73
- radial_index: 131
- arb: 130
- time: 73
- spectral_index: 4
- instrument_time: 20
- time_segment: 73
- xyc_time: 73
- acqiris_time(acqiris_time)float320.0 1.0 2.0 3.0 ... 70.0 71.0 72.0
- units :
- s
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72.], dtype=float32)
- arb(arb)float320.0 1.0 2.0 ... 127.0 128.0 129.0
- units :
- arb
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129.], dtype=float32)
- instrument_time(instrument_time)float321.0 2.0 3.0 4.0 ... 18.0 19.0 20.0
- units :
- s
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.], dtype=float32)
- radial_index(radial_index)float320.0 1.0 2.0 ... 128.0 129.0 130.0
- units :
- arb
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130.], dtype=float32)
- spectral_index(spectral_index)float321.0 2.0 3.0 4.0
- units :
array([1., 2., 3., 4.], dtype=float32)
- time(time)float320.004166 0.008332 ... 0.3 0.3042
- units :
- s
array([0.004166, 0.008332, 0.012498, 0.016664, 0.02083 , 0.024996, 0.029162, 0.033333, 0.037499, 0.041665, 0.045831, 0.049998, 0.054163, 0.058329, 0.062495, 0.066667, 0.070833, 0.074998, 0.079165, 0.083331, 0.087496, 0.091663, 0.095829, 0.1 , 0.104166, 0.108332, 0.112498, 0.116664, 0.12083 , 0.124996, 0.129162, 0.133333, 0.137499, 0.141665, 0.145831, 0.149998, 0.154163, 0.158329, 0.162495, 0.166667, 0.170833, 0.174999, 0.179165, 0.183331, 0.187496, 0.191663, 0.195829, 0.2 , 0.204166, 0.208332, 0.212498, 0.216664, 0.22083 , 0.224996, 0.229162, 0.233333, 0.237499, 0.241665, 0.245831, 0.249998, 0.254163, 0.258329, 0.262495, 0.266667, 0.270833, 0.274998, 0.279165, 0.283331, 0.287496, 0.291663, 0.295829, 0.3 , 0.304166], dtype=float32)
- xyc_time(xyc_time)float320.0 1.0 2.0 3.0 ... 70.0 71.0 72.0
- units :
- s
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72.], dtype=float32)
- acqiris_time_(acqiris_time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['acqiris_time']
- file_name :
- None
- format :
- None
- label :
- time
- mds_name :
- \TOP.ANALYSED.AYC:ACQIRIS_TIME
- name :
- ayc/acqiris_time_
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_ACQIRIS_TIME
- units :
- s
- uuid :
- 424fbc4e-f837-5997-b90d-27da7842ee34
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - angle(radial_index)float32dask.array<chunksize=(131,), meta=np.ndarray>
- description :
- dims :
- ['radial_index']
- file_name :
- None
- format :
- None
- label :
- scattering angle
- mds_name :
- \TOP.ANALYSED.AYC:ANGLE
- name :
- ayc/angle
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_ANGLE
- units :
- uuid :
- 9b6b5033-9c0b-53c6-b940-c4bc29e02421
- version :
- 0
Array Chunk Bytes 524 B 524 B Shape (131,) (131,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aspectra(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index', 'spectral_index']
- file_name :
- None
- format :
- None
- label :
- Fitted spectra
- mds_name :
- \TOP.ANALYSED.AYC:ASPECTRA
- name :
- ayc/aspectra
- quality :
- Not Checked
- rank :
- 3
- shape :
- [73, 130, 4]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_ASPECTRA
- units :
- V
- uuid :
- 94fe4ec9-cd29-5fd5-b2e5-f5da3c3b2834
- version :
- 0
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - chi2(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- fit chi^2 error
- mds_name :
- \TOP.ANALYSED.AYC:CHI2
- name :
- ayc/chi2
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_CHI2
- units :
- uuid :
- 5a43a5f1-e090-5e06-b441-658878563a88
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - covariance_ne_te(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- fit covariance of ne Te
- mds_name :
- \TOP.ANALYSED.AYC.COVARIANCE:NE_TE
- name :
- ayc/covariance_ne_te
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_COVARIANCE_NE_TE
- units :
- eV / m ** 3
- uuid :
- 6c4c38dd-f19c-5af2-9254-334abf13f088
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - instrument_dr(instrument_time, radial_index)float32dask.array<chunksize=(20, 131), meta=np.ndarray>
- description :
- dims :
- ['instrument_time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- instrument_dr
- mds_name :
- \TOP.ANALYSED.AYC.INSTRUMENT:DR
- name :
- ayc/instrument_dr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [20, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_INSTRUMENT_DR
- units :
- m
- uuid :
- aac29b54-4567-5a77-beae-c12bd3317588
- version :
- 0
Array Chunk Bytes 10.23 kiB 10.23 kiB Shape (20, 131) (20, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - interferometer_corr(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Interferometer Correctio
- mds_name :
- \TOP.ANALYSED.AYC.TERFEROMETER:CORR
- name :
- ayc/interferometer_corr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_INTERFEROMETER_CORR
- units :
- -
- uuid :
- f0b399ed-75aa-5443-9243-313f2293bd3e
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - laser_energy(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- laser energy
- mds_name :
- \TOP.ANALYSED.AYC:LASER_ENERGY
- name :
- ayc/laser_energy
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_LASER_ENERGY
- units :
- J
- uuid :
- b90679b3-0109-59fc-9e67-3f78444cb09c
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - laser_track(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- laser number
- mds_name :
- \TOP.ANALYSED.AYC:LASER_TRACK
- name :
- ayc/laser_track
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_LASER_TRACK
- units :
- uuid :
- cede67e8-3fef-5085-a585-2de2089c57e6
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ne(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- Electron Density
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- electron density
- mds_name :
- \TOP.ANALYSED.AYC:NE
- name :
- ayc/ne
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_NE
- units :
- 1 / m ** 3
- uuid :
- 0141808d-ccda-5bce-917c-2eebd553f22f
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ne_core(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- Peak electron density (t)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- core density
- mds_name :
- \TOP.ANALYSED.AYC:NE_CORE
- name :
- ayc/ne_core
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_NE_CORE
- units :
- 1 / m ** 3
- uuid :
- 3a040ddc-6f6f-55ae-ad2e-b0e9489701e1
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ne_error(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- units :
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - passnumber()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AYC:PASSNUMBER
- name :
- ayc/passnumber
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_PASSNUMBER
- units :
- uuid :
- 476690c4-d531-5a96-924c-d2aa75fd8b7c
- version :
- 0
[1 values with dtype=float32]
- pe(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- Electron Pressure
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- electron pressure
- mds_name :
- \TOP.ANALYSED.AYC:PE
- name :
- ayc/pe
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_PE
- units :
- uuid :
- d724d9a7-97ad-59c5-99bd-00f2de46ddf1
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pe_error(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- units :
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasmalight_error(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index', 'spectral_index']
- file_name :
- None
- format :
- None
- label :
- Plasma light noise on sc
- mds_name :
- \TOP.ANALYSED.AYC.PLASMALIGHT:ERROR
- name :
- ayc/plasmalight_error
- quality :
- Not Checked
- rank :
- 3
- shape :
- [73, 130, 4]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_PLASMALIGHT_ERROR
- units :
- V
- uuid :
- 0d5b9970-df99-5547-9384-7e0a5eac6b20
- version :
- 0
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - poisson_error(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index', 'spectral_index']
- file_name :
- None
- format :
- None
- label :
- Poisson error on scatter
- mds_name :
- \TOP.ANALYSED.AYC.POISSON:ERROR
- name :
- ayc/poisson_error
- quality :
- Not Checked
- rank :
- 3
- shape :
- [73, 130, 4]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_POISSON_ERROR
- units :
- V
- uuid :
- f33b5dab-f048-51e9-bc27-8ae83ace825d
- version :
- 0
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - polyname(arb)float32dask.array<chunksize=(130,), meta=np.ndarray>
- description :
- dims :
- ['arb']
- file_name :
- None
- format :
- None
- label :
- polychromator
- mds_name :
- \TOP.ANALYSED.AYC:POLYNAME
- name :
- ayc/polyname
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_POLYNAME
- units :
- uuid :
- 24a481c8-739e-54fd-ab1d-b2044b1e1679
- version :
- 0
Array Chunk Bytes 520 B 520 B Shape (130,) (130,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pulse(arb)float32dask.array<chunksize=(130,), meta=np.ndarray>
- description :
- dims :
- ['arb']
- file_name :
- None
- format :
- None
- label :
- pulse
- mds_name :
- name :
- ayc/pulse
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_PULSE
- units :
- uuid :
- 5986d498-7a4f-56fd-9c1d-bd1f7fce9792
- version :
- 0
Array Chunk Bytes 520 B 520 B Shape (130,) (130,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - r_core(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- Peak position (t)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- core radius
- mds_name :
- \TOP.ANALYSED.AYC:R_CORE
- name :
- ayc/r_core
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_R_CORE
- units :
- m
- uuid :
- aab4d505-2c5d-5425-9be8-811d64a8cfe7
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - r_error(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- units :
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - radius(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- Radial basis (x,t)
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- major radius
- mds_name :
- \TOP.ANALYSED.AYC:R
- name :
- ayc/r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_R
- units :
- m
- uuid :
- 30d2c0c2-39ee-5a8e-a321-9d87ace7b5b9
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - scat_length(arb)float32dask.array<chunksize=(130,), meta=np.ndarray>
- description :
- dims :
- ['arb']
- file_name :
- None
- format :
- None
- label :
- scattering length
- mds_name :
- \TOP.ANALYSED.AYC:SCAT_LENGTH
- name :
- ayc/scat_length
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_SCAT_LENGTH
- units :
- m
- uuid :
- 3edcd54b-335d-56f6-b942-89cd09684d14
- version :
- 0
Array Chunk Bytes 520 B 520 B Shape (130,) (130,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - segment_number(time_segment)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['time_segment']
- file_name :
- None
- format :
- None
- label :
- segment number
- mds_name :
- \TOP.ANALYSED.AYC.SEGMENT:NUMBER
- name :
- ayc/segment_number
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_SEGMENT_NUMBER
- units :
- uuid :
- 92c061ca-16ef-5736-a5e2-943f19dce455
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - spectra(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index', 'spectral_index']
- file_name :
- None
- format :
- None
- label :
- Raw spectra
- mds_name :
- \TOP.ANALYSED.AYC:SPECTRA
- name :
- ayc/spectra
- quality :
- Not Checked
- rank :
- 3
- shape :
- [73, 130, 4]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_SPECTRA
- units :
- V
- uuid :
- f496ab0c-babf-5b4e-a328-82800dc62550
- version :
- 0
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - spectra_error(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- units :
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - spectra_stray_light(time, radial_index, spectral_index)float32dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
- description :
- dims :
- ['time', 'radial_index', 'spectral_index']
- file_name :
- None
- format :
- None
- label :
- Raw spectra
- mds_name :
- \TOP.ANALYSED.AYC.SPECTRA_:STRAY_LIGHT
- name :
- ayc/spectra_stray_light
- quality :
- Not Checked
- rank :
- 3
- shape :
- [73, 130, 4]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_SPECTRA_STRAY_LIGHT
- units :
- V
- uuid :
- 0cdfb1e6-1318-57c6-8947-2840b427b683
- version :
- 0
Array Chunk Bytes 149.42 kiB 149.42 kiB Shape (73, 131, 4) (73, 131, 4) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - status()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AYC:STATUS
- name :
- ayc/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_STATUS
- units :
- uuid :
- fc60b479-2d9a-56d3-a028-723152f978c9
- version :
- 0
[1 values with dtype=float32]
- te(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- description :
- Electron Temperature
- dims :
- ['time', 'radial_index']
- file_name :
- None
- format :
- None
- label :
- electron temperature
- mds_name :
- \TOP.ANALYSED.AYC:TE
- name :
- ayc/te
- quality :
- Not Checked
- rank :
- 2
- shape :
- [73, 130]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_TE
- units :
- eV
- uuid :
- 54a16683-8517-5f0e-a242-f36d4fbfb9ba
- version :
- 0
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - te_core(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- Peak electron temperature (t)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- core temperature
- mds_name :
- \TOP.ANALYSED.AYC:TE_CORE
- name :
- ayc/te_core
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_TE_CORE
- units :
- eV
- uuid :
- f5ebb5d8-f799-5a58-816e-613ef60f6e44
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - te_error(time, radial_index)float32dask.array<chunksize=(73, 131), meta=np.ndarray>
- units :
Array Chunk Bytes 37.36 kiB 37.36 kiB Shape (73, 131) (73, 131) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - version_fibre()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AYC.VERSION:FIBRE
- name :
- ayc/version_fibre
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_VERSION_FIBRE
- units :
- uuid :
- d3fc997f-62ab-5f15-8bc9-5968427f3fd7
- version :
- 0
[1 values with dtype=float32]
- version_poly()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AYC:VERSION_POLY
- name :
- ayc/version_poly
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_VERSION_POLY
- units :
- uuid :
- 9c215e48-c155-5343-8c29-a4b8d67f4a22
- version :
- 0
[1 values with dtype=float32]
- version_raman()float32...
- description :
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.ANALYSED.AYC.VERSION:RAMAN
- name :
- ayc/version_raman
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_VERSION_RAMAN
- units :
- uuid :
- d371ccf9-2582-5f6b-81f6-3d6419e874ca
- version :
- 0
[1 values with dtype=float32]
- xyc_time_(xyc_time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['xyc_time']
- file_name :
- None
- format :
- None
- label :
- xyc_time
- mds_name :
- \TOP.ANALYSED.AYC:XYC_TIME
- name :
- ayc/xyc_time_
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_XYC_TIME
- units :
- s
- uuid :
- 8eebc9a7-a49b-57cd-8d1d-b94b6d98f329
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - yag_nelint(time)float32dask.array<chunksize=(73,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- yag line integral densit
- mds_name :
- \TOP.ANALYSED.AYC:YAG_NELINT
- name :
- ayc/yag_nelint
- quality :
- Not Checked
- rank :
- 1
- shape :
- [73]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- time_index :
- 0
- uda_name :
- AYC_YAG_NELINT
- units :
- e- / m2
- uuid :
- b82681c6-08c5-5207-9343-9215a65b270f
- version :
- 0
Array Chunk Bytes 292 B 292 B Shape (73,) (73,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- acqiris_timePandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0], dtype='float32', name='acqiris_time'))
- arbPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 120.0, 121.0, 122.0, 123.0, 124.0, 125.0, 126.0, 127.0, 128.0, 129.0], dtype='float32', name='arb', length=130))
- instrument_timePandasIndex
PandasIndex(Index([ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0], dtype='float32', name='instrument_time'))
- radial_indexPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 121.0, 122.0, 123.0, 124.0, 125.0, 126.0, 127.0, 128.0, 129.0, 130.0], dtype='float32', name='radial_index', length=131))
- spectral_indexPandasIndex
PandasIndex(Index([1.0, 2.0, 3.0, 4.0], dtype='float32', name='spectral_index'))
- timePandasIndex
PandasIndex(Index([0.004166000057011843, 0.008331900462508202, 0.0124981002882123, 0.016664499416947365, 0.02082959935069084, 0.024995999410748482, 0.029162200167775154, 0.03333339840173721, 0.03749940171837807, 0.041665200144052505, 0.04583140090107918, 0.04999779909849167, 0.05416300147771835, 0.058329299092292786, 0.06249549984931946, 0.06666669994592667, 0.07083269953727722, 0.07499849796295166, 0.07916469871997833, 0.08333110064268112, 0.0874963030219078, 0.09166269749403, 0.09582880139350891, 0.10000000149011612, 0.10416600108146667, 0.10833189636468887, 0.11249800026416779, 0.11666440218687057, 0.12082959711551666, 0.12499599903821945, 0.12916210293769836, 0.13333329558372498, 0.13749930262565613, 0.14166520535945892, 0.14583130180835724, 0.1499978005886078, 0.15416289865970612, 0.1583292931318283, 0.16249549388885498, 0.16666670143604279, 0.17083260416984558, 0.17499850690364838, 0.17916469275951385, 0.18333110213279724, 0.18749630451202393, 0.19166259467601776, 0.19582879543304443, 0.20000000298023224, 0.2041659951210022, 0.20833179354667664, 0.2124979943037033, 0.2166644036769867, 0.22082960605621338, 0.22499600052833557, 0.2291620969772339, 0.2333333045244217, 0.23749929666519165, 0.24166519939899445, 0.24583129584789276, 0.24999770522117615, 0.25416290760040283, 0.258329302072525, 0.26249539852142334, 0.26666659116744995, 0.2708325982093811, 0.2749984860420227, 0.2791646122932434, 0.28333109617233276, 0.2874962091445923, 0.2916626036167145, 0.29582878947257996, 0.2999998927116394, 0.30416589975357056], dtype='float32', name='time'))
- xyc_timePandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0], dtype='float32', name='xyc_time'))
- description :
- Core Thomson scattering data
- file_name :
- ayc0304.20
- format :
- IDA3
- mds_name :
- None
- name :
- ayc
- quality :
- Not Checked
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ayc
- uda_name :
- AYC
- uuid :
- 8d043ece-8bf8-5af8-87e4-d2a1b01716fa
- version :
- 0
fig, axes = plt.subplots(2,1)
ax1, ax2 = axes
ax1.plot(dataset['time'], dataset['te_core'])
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Core Temperature (eV)')
ax2.plot(dataset['time'], dataset['ne_core'])
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Peak Core Electron Density ($1 / m^3$)')
for ax in axes:
ax.grid(alpha=0.3)
plt.tight_layout()
CO2 Interferometers#
CO2 interferometers (ane
) are used to measure the electron density in the plasma. By measuring the phase shift of the laser beam as it passes through the plasma, the electron density can be inferred with high precision.
dataset = catalog.level1.shots(url=url, group='ane')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 32768) Coordinates: * time (time) float32 -0.01 -0.00996 -0.00992 ... 1.301 1.301 1.301 Data variables: co2 (time) float32 dask.array<chunksize=(32768,), meta=np.ndarray> density (time) float32 dask.array<chunksize=(32768,), meta=np.ndarray> hene (time) float32 dask.array<chunksize=(32768,), meta=np.ndarray> passnumber float32 ... status float32 ... status_detail float32 ... version float32 ... Attributes: description: CO2 Interferometry file_name: ane0304.20 format: IDA3 mds_name: None name: ane quality: Not Checked shot_id: 30420 signal_type: Analysed source: ane uda_name: ANE uuid: 5f814dd8-7336-56d7-a1ea-bac62e5cdcd3 version: 0
- time: 32768
- time(time)float32-0.01 -0.00996 ... 1.301 1.301
- units :
- s
array([-0.01 , -0.00996, -0.00992, ..., 1.3006 , 1.30064, 1.30068], dtype=float32)
- co2(time)float32dask.array<chunksize=(32768,), meta=np.ndarray>
- description :
- integrated electron density determined from co2 laser interference fringes
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- m^-2
- mds_name :
- \TOP.ANALYSED.ANE:CO2
- name :
- ane/co2
- quality :
- Not Checked
- rank :
- 1
- shape :
- [32768]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_CO2
- units :
- 1 / m ** 2
- uuid :
- 74853458-cebb-55b9-a92c-9ba9bb367d17
- version :
- 0
Array Chunk Bytes 128.00 kiB 128.00 kiB Shape (32768,) (32768,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - density(time)float32dask.array<chunksize=(32768,), meta=np.ndarray>
- description :
- integrated electron density including vibration correction
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- m^-2
- mds_name :
- \TOP.ANALYSED.ANE:DENSITY
- name :
- ane/density
- quality :
- Not Checked
- rank :
- 1
- shape :
- [32768]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_DENSITY
- units :
- 1 / m ** 2
- uuid :
- 16841548-2592-5ac3-ab6d-6abed4f61440
- version :
- 0
Array Chunk Bytes 128.00 kiB 128.00 kiB Shape (32768,) (32768,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - hene(time)float32dask.array<chunksize=(32768,), meta=np.ndarray>
- description :
- electron density from HeNe fringes correspondes to vibrations in interferometer
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- m^-2
- mds_name :
- \TOP.ANALYSED.ANE:HENE
- name :
- ane/hene
- quality :
- Not Checked
- rank :
- 1
- shape :
- [32768]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_HENE
- units :
- 1 / m ** 2
- uuid :
- 28e1edee-78c6-546c-bc47-253a87a72067
- version :
- 0
Array Chunk Bytes 128.00 kiB 128.00 kiB Shape (32768,) (32768,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - passnumber()float32...
- description :
- Pass number of data
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Passno
- mds_name :
- \TOP.ANALYSED.ANE:PASSNUMBER
- name :
- ane/passnumber
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_PASSNUMBER
- units :
- uuid :
- 963011dc-53cc-5693-898d-b3edc5560c70
- version :
- 0
[1 values with dtype=float32]
- status()float32...
- description :
- status flag
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Status
- mds_name :
- \TOP.ANALYSED.ANE:STATUS
- name :
- ane/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_STATUS
- units :
- uuid :
- 810c5f50-1b7a-57e6-bd55-691b9c71a470
- version :
- 0
[1 values with dtype=float32]
- status_detail()float32...
- description :
- status detail
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- status_detail
- mds_name :
- \TOP.ANALYSED.ANE.STATUS_:DETAIL
- name :
- ane/status_detail
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_STATUS_DETAIL
- units :
- uuid :
- 0945c7f5-3c05-5148-bdba-47c525432a53
- version :
- 0
[1 values with dtype=float32]
- version()float32...
- description :
- version of analysis code
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Version
- mds_name :
- \TOP.ANALYSED.ANE:VERSION
- name :
- ane/version
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- time_index :
- 0
- uda_name :
- ANE_VERSION
- units :
- uuid :
- 791e58b4-3e52-5494-8c2a-e13812aa01a1
- version :
- 0
[1 values with dtype=float32]
- timePandasIndex
PandasIndex(Index([-0.009999999776482582, -0.009959999471902847, -0.009920000098645687, -0.009879999794065952, -0.009839999489486217, -0.009800000116229057, -0.009759999811649323, -0.009719999507069588, -0.009680000133812428, -0.009639999829232693, ... 1.300320029258728, 1.3003599643707275, 1.3004000186920166, 1.3004399538040161, 1.3004800081253052, 1.3005199432373047, 1.3005599975585938, 1.3005999326705933, 1.3006399869918823, 1.3006799221038818], dtype='float32', name='time', length=32768))
- description :
- CO2 Interferometry
- file_name :
- ane0304.20
- format :
- IDA3
- mds_name :
- None
- name :
- ane
- quality :
- Not Checked
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- ane
- uda_name :
- ANE
- uuid :
- 5f814dd8-7336-56d7-a1ea-bac62e5cdcd3
- version :
- 0
fig, ax = plt.subplots(1, 1)
plt.plot(dataset['time'], dataset['density'])
ax.set_xlabel('Time (s)')
ax.set_ylabel('Integrated Electron Density ($1 / m^2$)')
ax.grid(alpha=0.3)
plt.tight_layout()
Equillibrium Reconstruction Data#
The source efm
contains data from EFIT. EFIT is a computational tool used to reconstruct the magnetic equilibrium configuration of the plasma in a tokamak. It calculates the shape and position of the plasma, as well as the distribution of the current and pressure within it, based on magnetic measurements.
dataset = catalog.level1.shots(url=url, group='efm')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 64, psi_norm: 65, n_iterations: 10, fcoil_seg_n: 938, fcoil_n: 101, ffprime_coefs_n: 2, mag_probe_n: 78, psi_loop_n: 46, r: 65, z: 65, profile_r: 129, lcfs_coords: 147, limiter_n: 37, pprime_coefs_n: 2, profile_z: 65) Coordinates: (12/13) * fcoil_n (fcoil_n) float32 0.0 1.0 2.0 3.0 ... 98.0 99.0 100.0 * ffprime_coefs_n (ffprime_coefs_n) float32 0.0 1.0 * lcfs_coords (lcfs_coords) float32 0.0 1.0 2.0 ... 144.0 145.0 146.0 * mag_probe_n (mag_probe_n) float32 0.0 1.0 2.0 3.0 ... 75.0 76.0 77.0 * n_iterations (n_iterations) float32 0.0 1.0 2.0 3.0 ... 7.0 8.0 9.0 * pprime_coefs_n (pprime_coefs_n) float32 0.0 1.0 ... ... * profile_z (profile_z) float32 -2.0 -1.938 -1.875 ... 1.938 2.0 * psi_loop_n (psi_loop_n) float32 0.0 1.0 2.0 3.0 ... 43.0 44.0 45.0 * psi_norm (psi_norm) float32 0.0 0.01562 0.03125 ... 0.9844 1.0 * r (r) float32 0.06 0.09031 0.1206 0.1509 ... 1.939 1.97 2.0 * time (time) float32 -0.05 -0.045 -0.04 ... 0.29 0.295 0.3 * z (z) float32 -2.0 -1.938 -1.875 -1.812 ... 1.875 1.938 2.0 Dimensions without coordinates: fcoil_seg_n, limiter_n Data variables: (12/151) all_times (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> areap_c (time, psi_norm) float32 dask.array<chunksize=(64, 65), meta=np.ndarray> betan (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betap (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betapd (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betat (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> ... ... wpol (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint1_rc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint1_zc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint2_rc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint2_zc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> zbdry (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> Attributes: description: Basic EFIT file_name: efm0304.20 format: IDA3 mds_name: None name: efm quality: Not Checked shot_id: 30420 signal_type: Analysed source: efm uda_name: EFM uuid: 1e39c600-8ffb-5f56-900d-2941e352319c version: 0
- time: 64
- psi_norm: 65
- n_iterations: 10
- fcoil_seg_n: 938
- fcoil_n: 101
- ffprime_coefs_n: 2
- mag_probe_n: 78
- psi_loop_n: 46
- r: 65
- z: 65
- profile_r: 129
- lcfs_coords: 147
- limiter_n: 37
- pprime_coefs_n: 2
- profile_z: 65
- fcoil_n(fcoil_n)float320.0 1.0 2.0 3.0 ... 98.0 99.0 100.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100.], dtype=float32)
- ffprime_coefs_n(ffprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- lcfs_coords(lcfs_coords)float320.0 1.0 2.0 ... 144.0 145.0 146.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142., 143., 144., 145., 146.], dtype=float32)
- mag_probe_n(mag_probe_n)float320.0 1.0 2.0 3.0 ... 75.0 76.0 77.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.], dtype=float32)
- n_iterations(n_iterations)float320.0 1.0 2.0 3.0 ... 6.0 7.0 8.0 9.0
- units :
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32)
- pprime_coefs_n(pprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- profile_r(profile_r)float320.0 0.01562 0.03125 ... 1.97 2.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.06 , 0.0625 , 0.078125, 0.090312, 0.09375 , 0.109375, 0.120625, 0.125 , 0.140625, 0.150937, 0.15625 , 0.171875, 0.18125 , 0.1875 , 0.203125, 0.211563, 0.21875 , 0.234375, 0.241875, 0.25 , 0.265625, 0.272188, 0.28125 , 0.296875, 0.3025 , 0.3125 , 0.328125, 0.332813, 0.34375 , 0.359375, 0.363125, 0.375 , 0.390625, 0.393438, 0.40625 , 0.421875, 0.42375 , 0.4375 , 0.453125, 0.454063, 0.46875 , 0.484375, 0.5 , 0.514687, 0.515625, 0.53125 , 0.545 , 0.546875, 0.5625 , 0.575312, 0.578125, 0.59375 , 0.605625, 0.609375, 0.625 , 0.635938, 0.640625, 0.65625 , 0.66625 , 0.671875, 0.6875 , 0.696563, 0.703125, 0.71875 , 0.726875, 0.734375, 0.75 , 0.757188, 0.765625, 0.78125 , 0.7875 , 0.796875, 0.8125 , 0.817813, 0.828125, 0.84375 , 0.848125, 0.859375, 0.875 , 0.878438, 0.890625, 0.90625 , 0.90875 , 0.921875, 0.9375 , 0.939063, 0.953125, 0.96875 , 0.969375, 0.984375, 0.999688, 1. , 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- profile_z(profile_z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- psi_loop_n(psi_loop_n)float320.0 1.0 2.0 3.0 ... 43.0 44.0 45.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45.], dtype=float32)
- psi_norm(psi_norm)float320.0 0.01562 0.03125 ... 0.9844 1.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.0625 , 0.078125, 0.09375 , 0.109375, 0.125 , 0.140625, 0.15625 , 0.171875, 0.1875 , 0.203125, 0.21875 , 0.234375, 0.25 , 0.265625, 0.28125 , 0.296875, 0.3125 , 0.328125, 0.34375 , 0.359375, 0.375 , 0.390625, 0.40625 , 0.421875, 0.4375 , 0.453125, 0.46875 , 0.484375, 0.5 , 0.515625, 0.53125 , 0.546875, 0.5625 , 0.578125, 0.59375 , 0.609375, 0.625 , 0.640625, 0.65625 , 0.671875, 0.6875 , 0.703125, 0.71875 , 0.734375, 0.75 , 0.765625, 0.78125 , 0.796875, 0.8125 , 0.828125, 0.84375 , 0.859375, 0.875 , 0.890625, 0.90625 , 0.921875, 0.9375 , 0.953125, 0.96875 , 0.984375, 1. ], dtype=float32)
- r(r)float320.06 0.09031 0.1206 ... 1.97 2.0
- units :
- m
array([0.06 , 0.090312, 0.120625, 0.150937, 0.18125 , 0.211563, 0.241875, 0.272188, 0.3025 , 0.332813, 0.363125, 0.393438, 0.42375 , 0.454063, 0.484375, 0.514687, 0.545 , 0.575312, 0.605625, 0.635938, 0.66625 , 0.696563, 0.726875, 0.757188, 0.7875 , 0.817813, 0.848125, 0.878438, 0.90875 , 0.939063, 0.969375, 0.999688, 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- time(time)float32-0.05 -0.045 -0.04 ... 0.295 0.3
- units :
- S
array([-0.05 , -0.045, -0.04 , -0.035, -0.03 , -0.025, -0.02 , -0.015, -0.01 , -0.005, 0. , 0.04 , 0.045, 0.05 , 0.055, 0.06 , 0.065, 0.07 , 0.075, 0.08 , 0.085, 0.09 , 0.095, 0.1 , 0.105, 0.11 , 0.115, 0.12 , 0.125, 0.13 , 0.135, 0.14 , 0.145, 0.15 , 0.155, 0.16 , 0.165, 0.17 , 0.175, 0.18 , 0.185, 0.19 , 0.195, 0.2 , 0.205, 0.21 , 0.215, 0.22 , 0.225, 0.23 , 0.235, 0.24 , 0.245, 0.25 , 0.255, 0.26 , 0.265, 0.27 , 0.275, 0.28 , 0.285, 0.29 , 0.295, 0.3 ], dtype=float32)
- z(z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- all_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of attempted reconstruction (time base A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:ALL_TIMES
- name :
- efm/all_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ALL_TIMES
- units :
- s
- uuid :
- b7d2df9a-4fb1-5174-9350-8eadc6d3544e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - areap_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal area enclosed by flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol area of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:AREAP_C
- name :
- efm/areap_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_AREAP_(C)
- units :
- m ** 2
- uuid :
- cda04872-e742-5145-86c0-e3fb6c3828eb
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betan(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Normalised beta, efm_betat * | plasma minor radius (m) * vacuum toroidal B field at magnetic axis (T) / plasma current (MA) |; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- betat/(I/ a Bvac_geom)
- mds_name :
- \TOP.ANALYSED.EFM:BETAN
- name :
- efm/betan
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAN
- units :
- T
- uuid :
- c0db4373-b67d-51c5-8c42-ba1f42d47461
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betap(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal beta, volume-averaged pressure * 2 * mu_0 / <Bp>^2, Bp = averaged poloidal B field around LCFS (T), mu_0*I_plasma/integral(dl); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAP
- name :
- efm/betap
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAP
- units :
- uuid :
- 509acbb3-d182-5a9d-9a62-e95e36587d07
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betapd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETAPD
- name :
- efm/betapd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAPD
- units :
- uuid :
- b368f633-dd58-5fc0-b5ae-ad89e1ad3a03
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betat(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal beta, volume-averaged pressure * 2 * mu_0 / Bphi^2, Bphi = vacuum toroidal B field at magnetic axis (T); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAT
- name :
- efm/betat
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAT
- units :
- %
- uuid :
- 31cb8e3a-3b82-5189-aeac-51afc7d37598
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betatd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETATD
- name :
- efm/betatd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETATD
- units :
- uuid :
- cfd99e7d-0996-500a-9ce9-c1049a65cf47
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rgeom(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal B field (total) at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RGEOM
- name :
- efm/bphi_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RGEOM
- units :
- T
- uuid :
- 56188c7e-5ed0-58c9-a45e-3956dd976e00
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rmag(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal B field (total) at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RMAG
- name :
- efm/bphi_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RMAG
- units :
- T
- uuid :
- 30855da8-9b93-5f15-8020-15466cfcdfda
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_squared(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- plasma volume integral of (total toroidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi^2 dV
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_SQUARED
- name :
- efm/bphi_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- e267f5cf-2189-5678-9421-009da412c98d
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bpol_squared(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- plasma volume integral of (total poloidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bpol dV
- mds_name :
- \TOP.ANALYSED.EFM:BPOL_SQUARED
- name :
- efm/bpol_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPOL_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- 34fe2d69-9528-538e-a752-95a72a29c716
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Reference radius for efm_bvac_val; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius at where B_phi=_b
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_R
- name :
- efm/bvac_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_R
- units :
- m
- uuid :
- 8a236221-c3d2-5268-91aa-5055de097af1
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rgeom(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RGEOM
- name :
- efm/bvac_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RGEOM
- units :
- T
- uuid :
- 5efaa422-e4b9-5390-b2c4-e6cc58c50f97
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rmag(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RMAG
- name :
- efm/bvac_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RMAG
- units :
- T
- uuid :
- b3d92487-954b-540a-8bdd-ba31aab20633
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_val(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Reference vacuum toroidal B field at efm_bvac_r; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Vacuum toroidal field at
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_VAL
- name :
- efm/bvac_val
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_VAL
- units :
- T
- uuid :
- 93aa280a-d1fe-518c-8f09-36bfbabe318e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - chisq_magnetic(time, n_iterations)float32dask.array<chunksize=(64, 10), meta=np.ndarray>
- description :
- Magnetic fit total chi-squared for each iteration; f(num_iterations, A)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM.CHISQ:MAGNETIC
- name :
- efm/chisq_magnetic
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 10]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CHISQ_MAGNETIC
- units :
- uuid :
- ba60cd4c-f747-5b08-885b-16bd90fa837d
- version :
- 0
Array Chunk Bytes 2.50 kiB 2.50 kiB Shape (64, 10) (64, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cm_bdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Normalised psi at detected boundary surface; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- computed normalized psi_
- mds_name :
- \TOP.ANALYSED.EFM:CM_BDRY
- name :
- efm/cm_bdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CM_BDRY
- units :
- uuid :
- f9bc58cb-754d-5ded-99f3-7cc4c750ef59
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cnvrgd_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_TIME
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:CNVRGD_TIMES
- name :
- efm/cnvrgd_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CNVRGD_TIMES
- units :
- s
- uuid :
- 031cc89b-f777-5d24-aaf2-896a98a7e19f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_R
- name :
- efm/current_centrd_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_R
- units :
- m
- uuid :
- 36f75534-498b-57bd-a552-d6a46c2525c5
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_z(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- height of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_Z
- name :
- efm/current_centrd_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_Z
- units :
- m
- uuid :
- 8bbf0f75-10c2-5e30-93ca-5ac50ff103b3
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cutip()float32...
- description :
- Plasma current cut-off; currents below this imply vacuum reconstruction
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Ip threshold current
- mds_name :
- \TOP.ANALYSED.EFM:CUTIP
- name :
- efm/cutip
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CUTIP
- units :
- A
- uuid :
- a8ab9ea9-5b86-541d-86b4-54a44a90a82c
- version :
- 0
[1 values with dtype=float32]
- diamag_fluxc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Output (computed) diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:C
- name :
- efm/diamag_fluxc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(C)
- units :
- Wb
- uuid :
- 0e65f3a5-c0da-5528-b08b-c50f6328af23
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - diamag_fluxx(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Input (experimental) diamagnetic flux; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:X
- name :
- efm/diamag_fluxx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(X)
- units :
- Wb
- uuid :
- fdd4b47d-e12d-561f-b89e-97acf3312b15
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Elongation of LCFS; (Zmax-Zmin)/(Rmax-Rmin); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation
- mds_name :
- \TOP.ANALYSED.EFM:ELONGATION
- name :
- efm/elongation
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION
- units :
- uuid :
- bcc6df16-757c-5a48-a08b-66213b67316c
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Limit of elongation at magnetic axis, from flux differentials; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation on Magnetic A
- mds_name :
- \TOP.ANALYSED.EFM.ELONGATION_:AXIS
- name :
- efm/elongation_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION_AXIS
- units :
- uuid :
- d1854228-74d4-57f9-b79a-2503d35ded47
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Elongation of flux surfaces; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- elongation of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:ELONG_PSI_C
- name :
- efm/elongpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONG(PSI)_(C)
- units :
- uuid :
- 1e600730-9338-5d94-8f7c-29ffebc3863c
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang1(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of first type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 1
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG1
- name :
- efm/fcoil_ang1
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG1
- units :
- deg
- uuid :
- 6942ccc3-610d-5f4d-8a85-ebe7f9ff2800
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang2(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of second type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 2
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG2
- name :
- efm/fcoil_ang2
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG2
- units :
- deg
- uuid :
- 9334660c-125d-5dd8-be46-4af1803ef64e
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_c(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Output (computed) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Computed f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_C
- name :
- efm/fcoil_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(C)
- units :
- A
- uuid :
- 88d8d3ed-53e1-512e-b37b-d57d2b097292
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_chisq(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Chi-squared of each fitted f-coil; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each f-coil
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CHISQ
- name :
- efm/fcoil_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CHISQ
- units :
- uuid :
- 512a9812-48cc-528f-9af9-4b633366ec9d
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_circ(fcoil_seg_n)float64dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Circuit number of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil circuit
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CIRC
- name :
- efm/fcoil_circ
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CIRC
- units :
- uuid :
- 55b009a2-d6a4-534c-8da1-a04dd6ecb1eb
- version :
- 0
Array Chunk Bytes 7.33 kiB 7.33 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - fcoil_height(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_HEIGHT
- name :
- efm/fcoil_height
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_HEIGHT
- units :
- m
- uuid :
- cda552cd-454d-5b4c-8783-f299242be50d
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_r(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Radius
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_R
- name :
- efm/fcoil_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_R
- units :
- m
- uuid :
- 0fe95de9-0141-5d40-9b5f-016adba85b5e
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_turns(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Number of turns represented by each f-coil elements; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_TURNS
- name :
- efm/fcoil_turns
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_TURNS
- units :
- deg
- uuid :
- 6baebdf3-512d-552e-bde1-71876bf5885c
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_width(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Width
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_WIDTH
- name :
- efm/fcoil_width
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_WIDTH
- units :
- m
- uuid :
- f3afe543-951e-5023-a156-164e78d05458
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_x(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Input (experimental) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Measured f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_X
- name :
- efm/fcoil_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(X)
- units :
- A
- uuid :
- 42b92f1d-3050-5101-a821-a717b44db81f
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_xmult(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Multiplier for each f-coil element to weight current within coil, e.g. by area; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns multiplier
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_XMULT
- name :
- efm/fcoil_xmult
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_XMULT
- units :
- deg
- uuid :
- 72c999a4-3312-572d-9eab-a7e484696661
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_z(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_Z
- name :
- efm/fcoil_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_Z
- units :
- m
- uuid :
- 88b774bc-3b72-52c9-a8b1-8721c0d241ab
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcurbd()float32...
- description :
- ff' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- FFprime Boundary Conditi
- mds_name :
- \TOP.ANALYSED.EFM:FCURBD
- name :
- efm/fcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCURBD
- units :
- uuid :
- c0bc5583-fc0d-5178-a9e5-568fbb8f7ac8
- version :
- 0
[1 values with dtype=float32]
- ffprime(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- ff' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- ffprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:FFPRIME
- name :
- efm/ffprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME
- units :
- T-rad
- uuid :
- 729dd97f-a12c-5e34-b962-d66f44ef306b
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ffprime_coefs(time, ffprime_coefs_n)float32dask.array<chunksize=(64, 2), meta=np.ndarray>
- description :
- Coefficients of ff' profile representation
- dims :
- ['time', 'ffprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- FFPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM.FFPRIME_:COEFS
- name :
- efm/ffprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME_COEFS
- units :
- uuid :
- 43ae35d0-7c31-5853-8b2f-aa2f368e9e9f
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64, 2) (64, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - final_chisq(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Total chi-squared of fit; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM:FINAL_CHISQ
- name :
- efm/final_chisq
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FINAL_CHISQ
- units :
- uuid :
- d2ab7586-6417-517f-8fd6-8579e32ab6a9
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal current flux function, f=R*Bphi; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed f=R*B (centre t
- mds_name :
- \TOP.ANALYSED.EFM:F_PSI_C
- name :
- efm/fpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_F(PSI)_(C)
- units :
- T-m
- uuid :
- 295574ab-d34d-501d-ae8d-5e3936a38fc2
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Fit weights for LCFS position constraint
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- fwtpre
- mds_name :
- \TOP.ANALYSED.EFM:FWTBDRY
- name :
- efm/fwtbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBDRY
- units :
- uuid :
- 7a0cbc6d-f993-599a-9ccb-866866f5a503
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbp()float32...
- description :
- Flag to make p' and ff' proportional
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime and FFPrime Propo
- mds_name :
- \TOP.ANALYSED.EFM:FWTBP
- name :
- efm/fwtbp
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBP
- units :
- uuid :
- 85759ea5-4c77-5cef-b1f1-d93a8673fd95
- version :
- 0
[1 values with dtype=float32]
- fwtfc(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- f-coil circuit fit weights; f(fcoil_n)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of f-coils
- mds_name :
- \TOP.ANALYSED.EFM:FWTFC
- name :
- efm/fwtfc
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTFC
- units :
- uuid :
- 004b5907-3080-522c-a673-0a7d19c4b340
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtmp(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Magnetic detector fit weights; f(magpr_n)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of mag signal
- mds_name :
- \TOP.ANALYSED.EFM:FWTMP
- name :
- efm/fwtmp
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTMP
- units :
- uuid :
- 4386803e-5d35-528f-a009-99cdbf472b1a
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtsi(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Flux loop fit weights; f(silop_n)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of flux loop
- mds_name :
- \TOP.ANALYSED.EFM:FWTSI
- name :
- efm/fwtsi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTSI
- units :
- uuid :
- 6c6f4ba4-6530-509b-a0a0-b898b88ae2e2
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Radius
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:R_C
- name :
- efm/geom_axis_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_R(C)
- units :
- m
- uuid :
- 32abfece-8a73-5b9a-bd32-915602c2504f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Height
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:Z_C
- name :
- efm/geom_axis_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_Z(C)
- units :
- m
- uuid :
- 447d2d04-0300-5a44-9912-7aaf5256455e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridr(r)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- R grid for 2D outputs; f(nr)
- dims :
- ['r']
- file_name :
- None
- format :
- None
- label :
- r-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_R
- name :
- efm/gridr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(R)
- units :
- m
- uuid :
- 8848940c-90c5-55df-9c77-35fdf3a603a4
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridz(z)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- Z grid for 2D outputs; f(nz)
- dims :
- ['z']
- file_name :
- None
- format :
- None
- label :
- z-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_Z
- name :
- efm/gridz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(Z)
- units :
- m
- uuid :
- cbc01f56-14cc-5be2-b354-a44abf5abb40
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ip_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of attempted reconstruction for which plasma is present (time base C)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:IP_TIMES
- name :
- efm/ip_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IP_TIMES
- units :
- s
- uuid :
- 28913cd6-ffdc-57e1-8e42-9e8fb1f57044
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - irod(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal rod current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- toroidal rod current
- mds_name :
- \TOP.ANALYSED.EFM:IROD
- name :
- efm/irod
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IROD
- units :
- A-T
- uuid :
- 31ffb6f2-be4f-563e-a7bb-1a853f089cd2
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - iteration_error(time, n_iterations)float32dask.array<chunksize=(64, 10), meta=np.ndarray>
- description :
- Goodness of convergence criterion for each iteration; f(num_iterations, B)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Iteration error
- mds_name :
- \TOP.ANALYSED.EFM.ITERATION:ERROR
- name :
- efm/iteration_error
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 10]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ITERATION_ERROR
- units :
- uuid :
- 890879c4-0a3d-5de0-8144-f9e4233819ad
- version :
- 0
Array Chunk Bytes 2.50 kiB 2.50 kiB Shape (64, 10) (64, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - jr(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Toroidal plasma current density at Z=0 running from inboard to outboard in R; f(nr, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- Jphi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:J_R
- name :
- efm/jr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_J(R)
- units :
- uuid :
- e785cb91-61ba-5363-8aa7-fd2e66fb1b4e
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - kffcur()float64...
- description :
- Number of ff' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of FFprime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KFFCUR
- name :
- efm/kffcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFCUR
- units :
- uuid :
- 6aacce3c-9816-5036-8fc1-c612ae201c7d
- version :
- 0
[1 values with dtype=float64]
- kfffnc()float64...
- description :
- ff' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KFFFNC
- name :
- efm/kfffnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFFNC
- units :
- uuid :
- 2e2872a1-a56b-5f26-aeaa-062d86c8f99a
- version :
- 0
[1 values with dtype=float64]
- kppcur()float64...
- description :
- Number of p' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KPPCUR
- name :
- efm/kppcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPCUR
- units :
- uuid :
- 42652d41-1a2b-57a1-96f8-c992dc0a7a1d
- version :
- 0
[1 values with dtype=float64]
- kppfnc()float64...
- description :
- p' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KPPFNC
- name :
- efm/kppfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPFNC
- units :
- uuid :
- 3956ffcf-a0d9-519b-b3d0-9dae3bc12dc4
- version :
- 0
[1 values with dtype=float64]
- kwwcur()float64...
- description :
- Number of pw' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of P(Rot) Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KWWCUR
- name :
- efm/kwwcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWCUR
- units :
- uuid :
- 2a44700a-7b6c-549b-8a33-371aebecea0d
- version :
- 0
[1 values with dtype=float64]
- kwwfnc()float64...
- description :
- pw' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KWWFNC
- name :
- efm/kwwfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWFNC
- units :
- uuid :
- 00f8b868-d0af-5c1e-b6f3-5764c56b55eb
- version :
- 0
[1 values with dtype=float64]
- lcfs_length(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Length of poloidal cross-section of LCFS; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- length of lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_LENGTH
- name :
- efm/lcfs_length
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS_LENGTH
- units :
- m
- uuid :
- d663ddf5-7aa2-546f-94b0-ec9dbeb0d439
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_r(time, lcfs_coords)float32dask.array<chunksize=(64, 147), meta=np.ndarray>
- description :
- LCFS R coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- r-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_R_C
- name :
- efm/lcfsr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2600]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(R)_(C)
- units :
- m
- uuid :
- e5dfae60-bbcc-594f-a009-fe925a30cb56
- version :
- 0
Array Chunk Bytes 36.75 kiB 36.75 kiB Shape (64, 147) (64, 147) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_z(time, lcfs_coords)float32dask.array<chunksize=(64, 147), meta=np.ndarray>
- description :
- LCFS Z coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- z-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_Z_C
- name :
- efm/lcfsz_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2600]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(Z)_(C)
- units :
- m
- uuid :
- b7cccb45-5cb3-574e-9a7e-03248a416f2a
- version :
- 0
Array Chunk Bytes 36.75 kiB 36.75 kiB Shape (64, 147) (64, 147) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfsn_c(time)float64dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Number of LCFS coordinate points; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- No. of coords on lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_N_C
- name :
- efm/lcfsn_c
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(N)_(C)
- units :
- uuid :
- 40983563-a4d5-5bd9-add4-e96b36795023
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - li(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma internal inductance, vol avg (Bp^2) / surf avg (Bp)^2; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Inductance
- mds_name :
- \TOP.ANALYSED.EFM:LI
- name :
- efm/li
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LI
- units :
- uuid :
- 8477215a-950b-584e-a482-848eb28d6b6a
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterr(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- R co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Radius
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_R
- name :
- efm/limiterr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(R)
- units :
- m
- uuid :
- 73dde2af-4374-51ce-a5a8-fecd9560cba6
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterz(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- Z co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Height
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_Z
- name :
- efm/limiterz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(Z)
- units :
- m
- uuid :
- 2d3888a5-604f-530f-9c1e-f2488b997d0a
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_R
- name :
- efm/magnetic_axis_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_R
- units :
- m
- uuid :
- dd081d76-7df6-56a5-a87e-8e30403e5283
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_z(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_Z
- name :
- efm/magnetic_axis_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_Z
- units :
- m
- uuid :
- 3ada1264-043f-58e0-94af-3b2210ddf5f8
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_ang(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining angular skew of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Angle
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_ANG
- name :
- efm/magpr_ang
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_ANG
- units :
- deg
- uuid :
- cf0344ce-f800-54cb-9c04-c45b65509417
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_c(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Computed magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_C
- name :
- efm/magpr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(C)
- units :
- T
- uuid :
- 140c8311-4680-5029-98a5-b37771e66280
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_len(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining length of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Length
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_LEN
- name :
- efm/magpr_len
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_LEN
- units :
- m
- uuid :
- 0f4e84d7-9ff5-5641-b9a5-ddfe5b41d99f
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_r(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- R of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_R
- name :
- efm/magpr_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_R
- units :
- m
- uuid :
- 53aed4a5-9f8c-5bc0-b9e6-c8893224ea2c
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_x(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Measured magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_X
- name :
- efm/magpr_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(X)
- units :
- T
- uuid :
- c0ff6e1d-723f-59df-9257-93b1853e397a
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_z(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Z of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_Z
- name :
- efm/magpr_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_Z
- units :
- m
- uuid :
- d3f6a120-771f-5a5c-b77d-51ba8cf70341
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpri_chisq(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic field probe; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each magnetic
- mds_name :
- \TOP.ANALYSED.EFM:MAGPRI_CHISQ
- name :
- efm/magpri_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPRI_CHISQ
- units :
- uuid :
- d75b0d2a-d00b-5708-aa38-12ba81466f52
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - minor_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Minor radius of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Minor Radius
- mds_name :
- \TOP.ANALYSED.EFM:MINOR_RADIUS
- name :
- efm/minor_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MINOR_RADIUS
- units :
- m
- uuid :
- a221f003-19e0-5589-8378-ab4b55407364
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - nh()float64...
- description :
- Number of vertical grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NH
- name :
- efm/nh
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NH
- units :
- uuid :
- c68811ac-f71c-57dd-ad68-54d2df6e0075
- version :
- 0
[1 values with dtype=float64]
- npress()float64...
- description :
- Number of pressure constraints
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- No. of pressure constrai
- mds_name :
- \TOP.ANALYSED.EFM:NPRESS
- name :
- efm/npress
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NPRESS
- units :
- uuid :
- 8c183e04-e4a2-5458-8886-b23cce6fb7d2
- version :
- 0
[1 values with dtype=float64]
- num_iterations(time)float64dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Number of iterations; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- number of iterations
- mds_name :
- \TOP.ANALYSED.EFM.NUM:ITERATIONS
- name :
- efm/num_iterations
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NUM_ITERATIONS
- units :
- uuid :
- d34f53c3-011b-5fe4-aea2-bc2865c179b2
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - nw()float64...
- description :
- Number of horizontal grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NW
- name :
- efm/nw
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NW
- units :
- uuid :
- 65f6da9a-16a2-56d2-a15b-4b7d100cd164
- version :
- 0
[1 values with dtype=float64]
- p2ar_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Non-rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (non-rotational par
- mds_name :
- \TOP.ANALYSED.EFM:P2A_R_C
- name :
- efm/p2ar_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2A(R)_(C)
- units :
- Pa
- uuid :
- 976a8e19-f85a-5952-aa6f-5e953a4e8594
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2br_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Coefficient of rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- pw(r) (rotational part)
- mds_name :
- \TOP.ANALYSED.EFM:P2B_R_C
- name :
- efm/p2br_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2B(R)_(C)
- units :
- Pa
- uuid :
- e339ce02-2da8-5c93-b4de-4db8f03057bf
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2cr_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- contribution of pw(r) to
- mds_name :
- \TOP.ANALYSED.EFM:P2C_R_C
- name :
- efm/p2cr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2C(R)_(C)
- units :
- Pa
- uuid :
- 75054c75-2b83-5320-b11a-d3912e35600f
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - passnumber()float64...
- description :
- MAST scheduler pass number
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Pass
- mds_name :
- \TOP.ANALYSED.EFM:PASSNUMBER
- name :
- efm/passnumber
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PASSNUMBER
- units :
- uuid :
- 8d1335f3-b16c-50ba-8c0a-0e67c75a5dca
- version :
- 0
[1 values with dtype=float64]
- pcurbd()float32...
- description :
- p' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:PCURBD
- name :
- efm/pcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PCURBD
- units :
- uuid :
- 5f570b49-2b37-5290-a3d7-7e3e15b9df24
- version :
- 0
[1 values with dtype=float32]
- plasma_area(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Area of poloidal cross-section of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Area
- mds_name :
- \TOP.ANALYSED.EFM:PLASMA_AREA
- name :
- efm/plasma_area
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_AREA
- units :
- m ** 2
- uuid :
- cba97a4d-dd14-535f-a073-4ed8c6f8c137
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_c(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Output (computed) fitted total plasma current; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:C
- name :
- efm/plasma_currc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(C)
- units :
- A
- uuid :
- 740b5611-77cc-53be-ad21-de424871e0ce
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_rz(time, z, r)float32dask.array<chunksize=(32, 33, 65), meta=np.ndarray>
- description :
- Plasma current density as a function of R and Z; f(nw, nh, B)
- dims :
- ['time', 'z', 'r']
- file_name :
- None
- format :
- None
- label :
- J(r,z)
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:R_Z
- name :
- efm/plasma_currrz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [53, 65, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(R,Z)
- units :
- A / m ** 2
- uuid :
- 5ec0f335-5ffa-5ca7-93d5-96de6b502716
- version :
- 0
Array Chunk Bytes 1.03 MiB 268.12 kiB Shape (64, 65, 65) (32, 33, 65) Dask graph 4 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_x(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Input (experimental) fitted total plasma current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:X
- name :
- efm/plasma_currx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(X)
- units :
- A
- uuid :
- 0ea726da-5408-5571-ae9c-09c19d4d90b0
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_energy(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma thermal energy; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Thermal Energy:3/
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:ENERGY
- name :
- efm/plasma_energy
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_ENERGY
- units :
- J
- uuid :
- fc9e39da-b835-5341-afc8-99da9cf8619f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_volume(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma volume; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Volume
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:VOLUME
- name :
- efm/plasma_volume
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_VOLUME
- units :
- m ** 3
- uuid :
- da7eba13-6ac7-5a5a-a778-b87ad1ba5b38
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pol_length(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal lengths of flux surfaces as a function of flux; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol lengths of flux surf
- mds_name :
- \TOP.ANALYSED.EFM:POL_LENGTH
- name :
- efm/pol_length
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_POL_LENGTH
- units :
- m
- uuid :
- 455da776-f151-5810-b1d4-4311ab40d837
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- p' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME
- name :
- efm/pprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME
- units :
- Pa-rad/Wb
- uuid :
- 21825a09-c80c-5056-818b-a11af9f3093e
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime_coefs(time, pprime_coefs_n)float32dask.array<chunksize=(64, 2), meta=np.ndarray>
- description :
- p' polynomial coefficients
- dims :
- ['time', 'pprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME_COEFS
- name :
- efm/pprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME_COEFS
- units :
- uuid :
- 5a98f10c-95be-504a-ba03-750f5793ba43
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64, 2) (64, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprimew(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Rotational pressure contribution profile; f(nw, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- prpime(rot) (centre to e
- mds_name :
- \TOP.ANALYSED.EFM:PPRIMEW
- name :
- efm/pprimew
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIMEW
- units :
- Pa-ra/Wb
- uuid :
- c6ed9eae-b2cd-591c-bd3d-e8cc6633a119
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ppsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Pressure as a function of flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed press (centre t
- mds_name :
- \TOP.ANALYSED.EFM:P_PSI_C
- name :
- efm/ppsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(PSI)_(C)
- units :
- Pa
- uuid :
- 0d710474-d92e-5992-a3d1-c4caf144787f
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pr_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Pressure as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (total)
- mds_name :
- \TOP.ANALYSED.EFM:P_R_C
- name :
- efm/pr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(R)_(C)
- units :
- Pa
- uuid :
- 85371d6c-9f6f-5b74-95d1-45770328718c
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux on axis
- mds_name :
- \TOP.ANALYSED.EFM:PSI_AXIS
- name :
- efm/psi_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_AXIS
- units :
- Wb / rad
- uuid :
- 6cfc8f31-91bf-5b61-bf45-f343591f5f74
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_boundary(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the plasma boundary; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux at boundar
- mds_name :
- \TOP.ANALYSED.EFM:PSI_BOUNDARY
- name :
- efm/psi_boundary
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_BOUNDARY
- units :
- Wb / rad
- uuid :
- 26637893-a225-5955-8178-02b9c355d65f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psir(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R
- name :
- efm/psir
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R)
- units :
- uuid :
- 93e3561c-98bd-5c1c-abf7-2d2a22b38981
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psirz(time, profile_z, profile_r)float32dask.array<chunksize=(32, 33, 65), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius and height; f(nw, nh, B)
- dims :
- ['time', 'profile_z', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r,z)
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R_Z
- name :
- efm/psirz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [64, 65, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R,Z)
- units :
- Wb / rad
- uuid :
- 91ea7bbe-13ee-5851-864f-df59228f161e
- version :
- 0
Array Chunk Bytes 2.05 MiB 268.12 kiB Shape (64, 65, 129) (32, 33, 65) Dask graph 8 chunks in 2 graph layers Data type float32 numpy.ndarray - pwpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Rotational pressure flux function p_omega as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed rotational pres
- mds_name :
- \TOP.ANALYSED.EFM:PW_PSI_C
- name :
- efm/pwpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PW(PSI)_(C)
- units :
- Pa
- uuid :
- b8a7c5db-ad2b-53a8-b885-0ca03ec33139
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=1_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=1 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=1 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_1_RADIUS
- name :
- efm/q=1_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=1_RADIUS
- units :
- m
- uuid :
- 12b1f760-a042-511b-878d-f34f789db876
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=2_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=2 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=2 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_2_RADIUS
- name :
- efm/q=2_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=2_RADIUS
- units :
- m
- uuid :
- 6b77e0bd-35fd-5291-952c-14d87efb36c2
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=3_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=3 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=3 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_3_RADIUS
- name :
- efm/q=3_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=3_RADIUS
- units :
- m
- uuid :
- faa09b4a-f9e3-56a8-8bec-379a5821a585
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_100(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=100%
- mds_name :
- \TOP.ANALYSED.EFM:Q_100
- name :
- efm/q_100
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_100
- units :
- uuid :
- 8041cdce-59ec-54f5-9769-6b4fbccb8e8b
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_90(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=90%
- mds_name :
- \TOP.ANALYSED.EFM:Q_90
- name :
- efm/q_90
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_90
- units :
- uuid :
- 51ab04a6-35f3-5ebb-8cd9-9bc1be4de4e9
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_95(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=95%
- mds_name :
- \TOP.ANALYSED.EFM:Q_95
- name :
- efm/q_95
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_95
- units :
- uuid :
- 18b9439c-e71e-5ce6-b3b4-b9dbe2a08caf
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q on Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM:Q_AXIS
- name :
- efm/q_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_AXIS
- units :
- uuid :
- 2bd0863c-2e4b-535a-b39f-0a7e5e44c5ca
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Safety factor as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- q-profile (centre to edg
- mds_name :
- \TOP.ANALYSED.EFM:Q_PSI_C
- name :
- efm/qpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(PSI)_(C)
- units :
- uuid :
- 0387c7e0-76d1-5107-bd2c-6292db62098b
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qr(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Safety factor as a function of radius at Z=0; f(npsi, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- q(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:Q_R
- name :
- efm/qr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(R)
- units :
- uuid :
- dc5c59c6-c842-5747-98db-d0495738576a
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qstar(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- qstar = fvac*(kappa^2+1)/(4e-7 I_p A^2)*(1.24-0.54*kappa+0.3*(kappa^2+triangn^2)+0.13*triangn )*(1 + (1+0.5*(betap+li/2)^2)/A^2); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q-star
- mds_name :
- \TOP.ANALYSED.EFM:QSTAR
- name :
- efm/qstar
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_QSTAR
- units :
- uuid :
- 5d69b017-2bc4-50d9-b998-b30b531dbb48
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- rbdry
- mds_name :
- \TOP.ANALYSED.EFM:RBDRY
- name :
- efm/rbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RBDRY
- units :
- m
- uuid :
- 6fcf7493-9ffc-54a5-b8af-00390405aa87
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_IN
- name :
- efm/rpsi100_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_IN
- units :
- m
- uuid :
- c9d75e73-3990-5c0b-be27-968f224e696c
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_OUT
- name :
- efm/rpsi100_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_OUT
- units :
- m
- uuid :
- 5a30e41a-d1a1-5fa5-bada-7367488a5f0e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_IN
- name :
- efm/rpsi90_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_IN
- units :
- m
- uuid :
- 1bf651e5-0abe-5c57-acba-c8d43c8d9123
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_OUT
- name :
- efm/rpsi90_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_OUT
- units :
- m
- uuid :
- 55d05ed7-7e40-5c77-b667-44792d2caa43
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_IN
- name :
- efm/rpsi95_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_IN
- units :
- m
- uuid :
- 316e719b-be8e-53a9-b685-1718e5a49277
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_OUT
- name :
- efm/rpsi95_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_OUT
- units :
- m
- uuid :
- 3623b161-4b17-53b0-ae72-f753ed33cccc
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rt(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral RT
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_RT
- mds_name :
- \TOP.ANALYSED.EFM:RT
- name :
- efm/rt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RT
- units :
- m
- uuid :
- fd127bbd-fba3-5805-9261-4cd3039005cb
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvals(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Radial co-ordinates used for radial profiles; f(nw)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- R-coords used for radial
- mds_name :
- \TOP.ANALYSED.EFM:RVALS
- name :
- efm/rvals
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVALS
- units :
- uuid :
- 48050b25-9e92-5383-8d90-e4ca0e3e147d
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvtor()float32...
- description :
- Rotational pressure parameter
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- rotational constraint co
- mds_name :
- \TOP.ANALYSED.EFM:RVTOR
- name :
- efm/rvtor
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVTOR
- units :
- uuid :
- 241f7ddc-2c87-50fd-979f-d525aaeb10dc
- version :
- 0
[1 values with dtype=float32]
- scalepr()float32...
- description :
- Constant to scale input pressure by
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- pressure scaling factor
- mds_name :
- \TOP.ANALYSED.EFM:SCALEPR
- name :
- efm/scalepr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SCALEPR
- units :
- uuid :
- 59c7da09-4c25-54c9-be48-6484481d2c03
- version :
- 0
[1 values with dtype=float32]
- shaf_integral_1(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 1
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_1
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_1
- name :
- efm/shaf_integral_1
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_1
- units :
- uuid :
- 21798555-7f56-5b17-85ce-a5cc45a78c3b
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_2(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 2
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_2
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_2
- name :
- efm/shaf_integral_2
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_2
- units :
- uuid :
- dcd63312-5b11-5006-bd8d-ed9e52ae6f50
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_3(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 3
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_3
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_3
- name :
- efm/shaf_integral_3
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_3
- units :
- uuid :
- 90d2aad4-fa1e-555a-b453-f13942a220cb
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - sigbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Relative position error on boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- sigbdry
- mds_name :
- \TOP.ANALYSED.EFM:SIGBDRY
- name :
- efm/sigbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SIGBDRY
- units :
- uuid :
- b8ac0e0b-7ce3-52e3-a21d-467967091e70
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_c(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Computed flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_C
- name :
- efm/silop_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(C)
- units :
- Wb
- uuid :
- 6f143c44-8c86-5c6f-83c0-35e7f301b744
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_chisq(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic flux probe; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each flux loop
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_CHISQ
- name :
- efm/silop_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_CHISQ
- units :
- uuid :
- 36edf804-c067-5b55-aa93-c9d9ecc58fe8
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_dphi(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Toroidal angular extent of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Toroidal Exten
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_DPHI
- name :
- efm/silop_dphi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_DPHI
- units :
- m
- uuid :
- 5cf990ab-ed3f-5d66-a7c6-4132fa2a317a
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_r(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- R of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Radiu
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_R
- name :
- efm/silop_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_R
- units :
- m
- uuid :
- 856165b2-670a-5ab4-8575-b37ff70e3f1d
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_x(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Measured flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_X
- name :
- efm/silop_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(X)
- units :
- Wb
- uuid :
- 8791ad66-9c81-5288-b312-2458557608bb
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_z(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Z of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Heigh
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_Z
- name :
- efm/silop_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_Z
- units :
- m
- uuid :
- 5d60facb-c6d0-55b7-9548-c0e8be2e5a78
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - status()float64...
- description :
- MAST scheduler status
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- MAST Status flag
- mds_name :
- \TOP.ANALYSED.EFM:STATUS
- name :
- efm/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_STATUS
- units :
- uuid :
- 255ae97c-f9a9-54a1-8bd7-b9e7c955e23f
- version :
- 0
[1 values with dtype=float64]
- time_(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_CNVRGD_TIMES
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:TIME
- name :
- efm/time_
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TIME
- units :
- s
- uuid :
- e7248f5d-a27a-59ce-ada3-1f56e2e088f7
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lower(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Lower plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Lower Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_LOWER
- name :
- efm/triang_lower
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_LOWER
- units :
- uuid :
- 72bf53f4-5ecb-5a52-bd39-b860fd55ef14
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Lower plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- lower delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_L:PSI_C
- name :
- efm/triang_lpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_L(PSI)_(C)
- units :
- uuid :
- 89187327-4026-5ad4-b2d9-e52fa6d4f243
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upper(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Upper plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Upper Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_UPPER
- name :
- efm/triang_upper
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_UPPER
- units :
- uuid :
- 4664260a-ff20-5e3a-bf62-61fd6a476805
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Upper plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- upper delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_U:PSI_C
- name :
- efm/triang_upsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_U(PSI)_(C)
- units :
- uuid :
- 1b84c3fe-20a5-5cfe-b5c4-8c5c08b26487
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - volp_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Plasma volume enclosed by flux surfaces as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- vol within psi surfaces
- mds_name :
- \TOP.ANALYSED.EFM:VOLP_C
- name :
- efm/volp_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_VOLP_(C)
- units :
- m ** 3
- uuid :
- e54fe482-f3f6-5b78-b1f1-22c4ce76a943
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wcurbd()float32...
- description :
- pw' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- P(Rot) Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:WCURBD
- name :
- efm/wcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WCURBD
- units :
- uuid :
- 0856f852-b925-551c-90ae-4093dc73a02a
- version :
- 0
[1 values with dtype=float32]
- wplasmd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma energy computed using diamagnetic energy, as in betapd
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Diamagnetic Energ
- mds_name :
- \TOP.ANALYSED.EFM:WPLASMD
- name :
- efm/wplasmd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPLASMD
- units :
- J
- uuid :
- 92ab9f43-0de5-581b-a883-c6bc10b8dfed
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wpol(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal part of magnetic energy in plasma; vol avg Bp^2 / 2 mu0; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Wpol
- mds_name :
- \TOP.ANALYSED.EFM:WPOL
- name :
- efm/wpol
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPOL
- units :
- J
- uuid :
- acec52d6-372a-5a00-854e-d6d6b8dca1f5
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_R_C
- name :
- efm/xpoint1_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_R(C)
- units :
- m
- uuid :
- eccf57c6-d71d-5cdd-b999-3dc464f12401
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_Z_C
- name :
- efm/xpoint1_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_Z(C)
- units :
- m
- uuid :
- 319404d2-10f1-5c26-87ee-3149180db242
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_R_C
- name :
- efm/xpoint2_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_R(C)
- units :
- m
- uuid :
- c56187f6-bdd6-52d9-966f-c828b7b56877
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_Z_C
- name :
- efm/xpoint2_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_Z(C)
- units :
- m
- uuid :
- 5c417167-69c9-5c80-93b1-8935ff84efa4
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - zbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- zbdry
- mds_name :
- \TOP.ANALYSED.EFM:ZBDRY
- name :
- efm/zbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ZBDRY
- units :
- m
- uuid :
- d2e90be2-8873-55b5-a642-52a4b2b95ce4
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- fcoil_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0], dtype='float32', name='fcoil_n', length=101))
- ffprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='ffprime_coefs_n'))
- lcfs_coordsPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 137.0, 138.0, 139.0, 140.0, 141.0, 142.0, 143.0, 144.0, 145.0, 146.0], dtype='float32', name='lcfs_coords', length=147))
- mag_probe_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0], dtype='float32', name='mag_probe_n'))
- n_iterationsPandasIndex
PandasIndex(Index([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype='float32', name='n_iterations'))
- pprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='pprime_coefs_n'))
- profile_rPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.05999999865889549, 0.0625, 0.078125, 0.09031249582767487, 0.09375, 0.109375, ... 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='profile_r', length=129))
- profile_zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='profile_z'))
- psi_loop_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0], dtype='float32', name='psi_loop_n'))
- psi_normPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.0625, 0.078125, 0.09375, 0.109375, 0.125, 0.140625, 0.15625, 0.171875, 0.1875, 0.203125, 0.21875, 0.234375, 0.25, 0.265625, 0.28125, 0.296875, 0.3125, 0.328125, 0.34375, 0.359375, 0.375, 0.390625, 0.40625, 0.421875, 0.4375, 0.453125, 0.46875, 0.484375, 0.5, 0.515625, 0.53125, 0.546875, 0.5625, 0.578125, 0.59375, 0.609375, 0.625, 0.640625, 0.65625, 0.671875, 0.6875, 0.703125, 0.71875, 0.734375, 0.75, 0.765625, 0.78125, 0.796875, 0.8125, 0.828125, 0.84375, 0.859375, 0.875, 0.890625, 0.90625, 0.921875, 0.9375, 0.953125, 0.96875, 0.984375, 1.0], dtype='float32', name='psi_norm'))
- rPandasIndex
PandasIndex(Index([0.05999999865889549, 0.09031249582767487, 0.12062500417232513, 0.1509374976158142, 0.18125000596046448, 0.21156251430511475, 0.24187500774860382, 0.2721875011920929, 0.30250000953674316, 0.33281251788139343, 0.3631250262260437, 0.3934375047683716, 0.42375001311302185, 0.4540625214576721, 0.484375, 0.5146874785423279, 0.5450000166893005, 0.5753124952316284, 0.6056250333786011, 0.635937511920929, 0.6662500500679016, 0.6965625286102295, 0.7268750071525574, 0.75718754529953, 0.7875000238418579, 0.8178125023841858, 0.8481250405311584, 0.8784375190734863, 0.9087499976158142, 0.9390625357627869, 0.9693750143051147, 0.9996875524520874, 1.0299999713897705, 1.0603125095367432, 1.0906249284744263, 1.120937466621399, 1.1512500047683716, 1.1815624237060547, 1.2118749618530273, 1.2421875, 1.2725000381469727, 1.3028124570846558, 1.3331249952316284, 1.363437533378601, 1.3937499523162842, 1.4240624904632568, 1.4543750286102295, 1.4846874475479126, 1.5149999856948853, 1.545312523841858, 1.575624942779541, 1.6059374809265137, 1.6362500190734863, 1.6665624380111694, 1.696874976158142, 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='r'))
- timePandasIndex
PandasIndex(Index([ -0.04999999701976776, -0.044999998062849045, -0.03999999910593033, -0.03500000014901161, -0.029999999329447746, -0.02499999850988388, -0.019999999552965164, -0.014999999664723873, -0.009999999776482582, -0.004999999888241291, 0.0, 0.03999999910593033, 0.044999998062849045, 0.04999999701976776, 0.054999999701976776, 0.05999999865889549, 0.06499999761581421, 0.07000000029802322, 0.07499999552965164, 0.07999999821186066, 0.08500000089406967, 0.08999999612569809, 0.0949999988079071, 0.09999999403953552, 0.10499999672174454, 0.10999999940395355, 0.11499999463558197, 0.11999999731779099, 0.125, 0.12999999523162842, 0.13499999046325684, 0.14000000059604645, 0.14499999582767487, 0.14999999105930328, 0.1550000011920929, 0.1599999964237213, 0.16499999165534973, 0.17000000178813934, 0.17499999701976776, 0.17999999225139618, 0.1850000023841858, 0.1899999976158142, 0.19499999284744263, 0.19999998807907104, 0.20499999821186066, 0.20999999344348907, 0.2149999886751175, 0.2199999988079071, 0.22499999403953552, 0.22999998927116394, 0.23499999940395355, 0.23999999463558197, 0.2449999898672104, 0.25, 0.2549999952316284, 0.25999999046325684, 0.26499998569488525, 0.26999998092651367, 0.2750000059604645, 0.2800000011920929, 0.2849999964237213, 0.28999999165534973, 0.29499998688697815, 0.29999998211860657], dtype='float32', name='time'))
- zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='z'))
- description :
- Basic EFIT
- file_name :
- efm0304.20
- format :
- IDA3
- mds_name :
- None
- name :
- efm
- quality :
- Not Checked
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- uda_name :
- EFM
- uuid :
- 1e39c600-8ffb-5f56-900d-2941e352319c
- version :
- 0
Below we show how to load and plot the plasma current denisty and with the last closed flux surface (LCFS).
d = dataset['plasma_current_rz'].dropna(dim='time')
r = dataset['r']
z = dataset['z']
lcfs_R = dataset['lcfs_r'].sel(time=d.time)
lcfs_Z = dataset['lcfs_z'].sel(time=d.time)
R, Z = np.meshgrid(r, z)
index = 50
# Get the x-point
xpoint_r = dataset['xpoint2_rc'][index]
xpoint_z = dataset['xpoint2_zc'][index]
# Get the current centre
mag_axis_r = dataset['current_centrd_r'][index]
mag_axis_z = dataset['current_centrd_z'][index]
# Get the last closed flux surface (LCFS)
lcfs_r = lcfs_R[index].values
lcfs_r = lcfs_r[~np.isnan(lcfs_r)]
lcfs_z = lcfs_Z[index].values
lcfs_z = lcfs_z[~np.isnan(lcfs_z)]
fig, ax = plt.subplots()
ax.contourf(R, Z, d[index], cmap='magma', levels=20, label='Plasma Current')
ax.plot(lcfs_r, lcfs_z, c='red', linestyle='--', label='LCFS')
ax.scatter(xpoint_r, xpoint_z, marker='x', color='green', label='X Point')
ax.scatter(mag_axis_r, mag_axis_z, marker='o', color='purple', label='Current Centre')
plt.title(f'EFIT Plasma Current & LCFS for Shot {d.attrs["shot_id"]}')
plt.ylabel('Z (m)')
plt.xlabel('R (m)')
plt.legend()
/var/folders/xr/yr8z575s52b4tbg3fj65qwx00000gp/T/ipykernel_88143/1992647380.py:28: UserWarning: The following kwargs were not used by contour: 'label'
ax.contourf(R, Z, d[index], cmap='magma', levels=20, label='Plasma Current')
<matplotlib.legend.Legend at 0x3791a4d10>
Mirnov Coils#
Mirnov coils are primarily used to measure magnetic fluctuations in the plasma. These fluctuations can provide important information about various plasma instabilities.
They are particularly useful for studying magnetohydrodynamic (MHD) phenomena. MHD activity includes various modes of instabilities, such as kink modes and tearing modes, which can affect plasma confinement and stability.
dataset = catalog.level1.shots(url='s3://mast/level1/shots/29790.zarr', group='xmo')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (dim_0: 16, dim_1: 2, time: 1400000) Coordinates: * dim_0 (dim_0) int32 0 1 2 3 4 5 ... 11 12 13 14 15 * dim_1 (dim_1) int32 0 1 * time (time) float64 -0.1 -0.1 -0.1 ... 0.6 0.6 0.6 Data variables: (12/18) devices_d3_acq216_025_channel (dim_0) int32 dask.array<chunksize=(16,), meta=np.ndarray> devices_d3_acq216_025_range (dim_0, dim_1) float32 dask.array<chunksize=(16, 2), meta=np.ndarray> devices_limit (dim_0) float64 dask.array<chunksize=(16,), meta=np.ndarray> omaha_1lz (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_2lt (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_2lz (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> ... ... omaha_5lz (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5ur (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5ut (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5uz (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> omaha_6lz (time) float32 dask.array<chunksize=(87500,), meta=np.ndarray> time1 (time) float64 dask.array<chunksize=(87500,), meta=np.ndarray> Attributes: description: Magnetic Field Measurements: OMAHA high frequency Mirnov co... file_name: xmo029790.nc format: CDF mds_name: None name: xmo quality: Not Checked shot_id: 29790 signal_type: Raw source: xmo uda_name: XMO uuid: ff541ac3-6b1c-5373-8d33-b85fd46bc75b version: -1
- dim_0: 16
- dim_1: 2
- time: 1400000
- dim_0(dim_0)int320 1 2 3 4 5 6 ... 10 11 12 13 14 15
- units :
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int32)
- dim_1(dim_1)int320 1
- units :
array([0, 1], dtype=int32)
- time(time)float64-0.1 -0.1 -0.1 -0.1 ... 0.6 0.6 0.6
- units :
- s
array([-0.1 , -0.099999, -0.099999, ..., 0.599998, 0.599999, 0.599999])
- devices_d3_acq216_025_channel(dim_0)int32dask.array<chunksize=(16,), meta=np.ndarray>
- description :
- dims :
- ['dim_0']
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.RAW.XMO.DEVICES_D3.ACQ216_025:CHANNEL
- name :
- xmo/devices_d3_acq216_025_channel
- quality :
- Not Checked
- rank :
- 1
- shape :
- [16]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/D3_ACQ216_025/CHANNEL
- units :
- uuid :
- b8dfcfeb-7532-5744-a051-05b03e011a92
- version :
- -1
Array Chunk Bytes 64 B 64 B Shape (16,) (16,) Dask graph 1 chunks in 2 graph layers Data type int32 numpy.ndarray - devices_d3_acq216_025_range(dim_0, dim_1)float32dask.array<chunksize=(16, 2), meta=np.ndarray>
- description :
- dims :
- ['dim_0', 'dim_1']
- file_name :
- None
- format :
- None
- label :
- /devices/d3_acq216_025/range
- mds_name :
- \TOP.RAW.XMO.DEVICES_D3.ACQ216_025:RANGE
- name :
- xmo/devices_d3_acq216_025_range
- quality :
- Not Checked
- rank :
- 2
- shape :
- [16, 2]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/D3_ACQ216_025/RANGE
- units :
- uuid :
- c25d1fcf-4905-53e5-8ab2-ecbb6ed40216
- version :
- -1
Array Chunk Bytes 128 B 128 B Shape (16, 2) (16, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - devices_limit(dim_0)float64dask.array<chunksize=(16,), meta=np.ndarray>
- description :
- dims :
- ['dim_0']
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.RAW.XMO.DEVICES:LIMIT
- name :
- xmo/devices_limit
- quality :
- Not Checked
- rank :
- 1
- shape :
- [2]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/LIMIT
- units :
- uuid :
- d1af5b6e-0ba9-51d0-8f62-763cef566a94
- version :
- -1
Array Chunk Bytes 128 B 128 B Shape (16,) (16,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - omaha_1lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_1lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/1LZ
- units :
- uuid :
- ebf41216-9c2f-5910-ad99-ab76b6d2cc3b
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_2lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_2lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/2LT
- units :
- uuid :
- 1e84a280-d09e-5904-800e-ed6868b7dc0b
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_2lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_2lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/2LZ
- units :
- uuid :
- c3f59da1-9cf1-559f-8fc7-80392de84158
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_3lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_3lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/3LT
- units :
- uuid :
- a8d59196-403f-5fe1-9a38-d34de8754cd1
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_3lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_3lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/3LZ
- units :
- uuid :
- 9b985bf1-ab54-55dc-a75c-fbbdfa450902
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lr(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LR
- units :
- uuid :
- daaec6d8-97e0-59d8-9b75-0ad1fdcd7157
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LT
- units :
- uuid :
- 3b784696-3355-5c48-b419-905ca44b2228
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LZ
- units :
- uuid :
- 1827c7c0-d688-51be-aa60-b49f70cdecba
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5LT
- units :
- uuid :
- 3f62be95-c42f-5e5a-bf73-03f6d225b9b6
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5LZ
- units :
- uuid :
- cc482786-87a5-59b6-bba0-f344bb6187c0
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5ur(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5ur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UR
- units :
- uuid :
- 92ebb676-92e0-5c78-a044-8384b4bf1a72
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5ut(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5ut
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UT
- units :
- uuid :
- 86178cf2-ed01-58d8-8be5-9fa72c183679
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5uz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5uz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UZ
- units :
- uuid :
- ba8b5d4f-8e89-58a7-8c2b-3405c5a2a112
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_6lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_6lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/6LZ
- units :
- uuid :
- d91166e7-867c-58a0-a710-ff010bd00f44
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - time1(time)float64dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time
- mds_name :
- \TOP.RAW.XMO:TIME1
- name :
- xmo/time1
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/TIME1
- units :
- s
- uuid :
- bfe58a24-e54f-5239-afb0-4c84aedc3006
- version :
- -1
Array Chunk Bytes 10.68 MiB 683.59 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float64 numpy.ndarray
- dim_0PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype='int32', name='dim_0'))
- dim_1PandasIndex
PandasIndex(Index([0, 1], dtype='int32', name='dim_1'))
- timePandasIndex
PandasIndex(Index([-0.09999999999999998, -0.09999949999999998, -0.09999899999999998, -0.09999849999999998, -0.09999799999999998, -0.09999749999999998, -0.09999699999999997, -0.09999649999999997, -0.09999599999999997, -0.09999549999999997, ... 0.5999949999958225, 0.5999954999958225, 0.5999959999958224, 0.5999964999958224, 0.5999969999958223, 0.5999974999958223, 0.5999979999958223, 0.5999984999958222, 0.5999989999958222, 0.5999994999958221], dtype='float64', name='time', length=1400000))
- description :
- Magnetic Field Measurements: OMAHA high frequency Mirnov coils (OMAHA), Centre Column Halo Current
- file_name :
- xmo029790.nc
- format :
- CDF
- mds_name :
- None
- name :
- xmo
- quality :
- Not Checked
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- uda_name :
- XMO
- uuid :
- ff541ac3-6b1c-5373-8d33-b85fd46bc75b
- version :
- -1
We can first look at the line profile for one of the Mirnov coils:
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
ax.plot(dataset['time'], dataset['omaha_3lz'])
ax.grid()
ax.grid(alpha=0.3)
ax.set_ylabel('Volts (V)')
ax.set_xlabel('Time (s)')
plt.tight_layout()
Looking at the spectrogram of the dataset can show us information about the MHD modes. Here we see several mode instabilities occuring before the plasma is lost.
ds = dataset['omaha_3lz']
# Parameters to limit the number of frequencies
nperseg = 2000 # Number of points per segment
nfft = 2000 # Number of FFT points
# Compute the Short-Time Fourier Transform (STFT)
sample_rate = 1/(ds.time[1] - ds.time[0])
f, t, Zxx = stft(ds, fs=int(sample_rate), nperseg=nperseg, nfft=nfft)
fig, ax = plt.subplots(figsize=(15, 5))
cax = ax.pcolormesh(t, f/1000, np.abs(Zxx), shading='nearest', cmap='jet', norm=LogNorm(vmin=1e-5))
ax.set_ylim(0, 50)
ax.set_title(f'XMO/OMAHA/3LZ - Shot {ds.attrs["shot_id"]}')
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')
plt.colorbar(cax, ax=ax)
<matplotlib.colorbar.Colorbar at 0x37d0e0a10>
Photron Camera Data#
RBA#
RBA contains the data from Photron bullet camera A.
A Photron Bullet Camera provides high-speed, high-resolution imaging of fast transient events in the plasma. Its ability to capture detailed images of plasma instabilities, turbulence, and disruptions makes it essential for understanding and controlling plasma behavior, ultimately aiding in the pursuit of sustained nuclear fusion.
dataset = catalog.level1.shots(url=url, group='rba')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 186, height: 912, width: 768) Coordinates: * time (time) float64 0.000256 0.002256 0.004256 ... 0.3083 0.3093 0.3103 Dimensions without coordinates: height, width Data variables: data (time, height, width) uint8 dask.array<chunksize=(24, 228, 192), meta=np.ndarray> Attributes: (12/48) CLASS: IMAGE IMAGE_SUBCLASS: IMAGE_INDEXED IMAGE_VERSION: 1.2 board_temp: 0.0 bottom: 1024 camera: ... ... units: pixels uuid: 4a073a8f-aa2d-5deb-95df-91f93194c494 vbin: 0 version: -1 view: Hl07 floor mount + FFC2 + 25mm lens + CII filter width: 768
- time: 186
- height: 912
- width: 768
- time(time)float640.000256 0.002256 ... 0.3093 0.3103
- units :
- s
array([2.56000e-04, 2.25600e-03, 4.25600e-03, 6.25600e-03, 8.25600e-03, 1.02560e-02, 1.22560e-02, 1.42560e-02, 1.62560e-02, 1.82560e-02, 2.02560e-02, 2.22560e-02, 2.42560e-02, 2.62560e-02, 2.82560e-02, 3.02560e-02, 3.22560e-02, 3.42560e-02, 3.62560e-02, 3.82560e-02, 4.02560e-02, 4.22560e-02, 4.42560e-02, 4.62560e-02, 4.82560e-02, 5.02560e-02, 5.22560e-02, 5.42560e-02, 5.62560e-02, 5.82560e-02, 6.02560e-02, 6.22560e-02, 6.42560e-02, 6.62560e-02, 6.82560e-02, 7.02560e-02, 7.22560e-02, 7.42560e-02, 7.62560e-02, 7.82560e-02, 8.02560e-02, 8.22560e-02, 8.42560e-02, 8.62560e-02, 8.82560e-02, 9.02560e-02, 9.22560e-02, 9.42560e-02, 9.62560e-02, 9.82560e-02, 1.00256e-01, 1.02256e-01, 1.04256e-01, 1.06256e-01, 1.08256e-01, 1.10256e-01, 1.12256e-01, 1.14256e-01, 1.16256e-01, 1.18256e-01, 1.20256e-01, 1.22256e-01, 1.24256e-01, 1.26256e-01, 1.28256e-01, 1.30256e-01, 1.32256e-01, 1.34256e-01, 1.36256e-01, 1.38256e-01, 1.40256e-01, 1.42256e-01, 1.44256e-01, 1.46256e-01, 1.48256e-01, 1.50256e-01, 1.52256e-01, 1.54256e-01, 1.56256e-01, 1.58256e-01, 1.60256e-01, 1.62256e-01, 1.64256e-01, 1.66256e-01, 1.68256e-01, 1.70256e-01, 1.72256e-01, 1.74256e-01, 1.76256e-01, 1.78256e-01, 1.80256e-01, 1.82256e-01, 1.84256e-01, 1.86256e-01, 1.88256e-01, 1.90256e-01, 1.92256e-01, 1.94256e-01, 1.96256e-01, 1.98256e-01, 2.00256e-01, 2.02256e-01, 2.04256e-01, 2.06256e-01, 2.08256e-01, 2.10256e-01, 2.12256e-01, 2.14256e-01, 2.16256e-01, 2.18256e-01, 2.20256e-01, 2.22256e-01, 2.24256e-01, 2.26256e-01, 2.28256e-01, 2.30256e-01, 2.32256e-01, 2.34256e-01, 2.36256e-01, 2.38256e-01, 2.40256e-01, 2.42256e-01, 2.44256e-01, 2.46256e-01, 2.48256e-01, 2.50256e-01, 2.51256e-01, 2.52256e-01, 2.53256e-01, 2.54256e-01, 2.55256e-01, 2.56256e-01, 2.57256e-01, 2.58256e-01, 2.59256e-01, 2.60256e-01, 2.61256e-01, 2.62256e-01, 2.63256e-01, 2.64256e-01, 2.65256e-01, 2.66256e-01, 2.67256e-01, 2.68256e-01, 2.69256e-01, 2.70256e-01, 2.71256e-01, 2.72256e-01, 2.73256e-01, 2.74256e-01, 2.75256e-01, 2.76256e-01, 2.77256e-01, 2.78256e-01, 2.79256e-01, 2.80256e-01, 2.81256e-01, 2.82256e-01, 2.83256e-01, 2.84256e-01, 2.85256e-01, 2.86256e-01, 2.87256e-01, 2.88256e-01, 2.89256e-01, 2.90256e-01, 2.91256e-01, 2.92256e-01, 2.93256e-01, 2.94256e-01, 2.95256e-01, 2.96256e-01, 2.97256e-01, 2.98256e-01, 2.99256e-01, 3.00256e-01, 3.01256e-01, 3.02256e-01, 3.03256e-01, 3.04256e-01, 3.05256e-01, 3.06256e-01, 3.07256e-01, 3.08256e-01, 3.09256e-01, 3.10256e-01])
- data(time, height, width)uint8dask.array<chunksize=(24, 228, 192), meta=np.ndarray>
Array Chunk Bytes 124.24 MiB 1.00 MiB Shape (186, 912, 768) (24, 228, 192) Dask graph 128 chunks in 2 graph layers Data type uint8 numpy.ndarray
- timePandasIndex
PandasIndex(Index([ 0.000256, 0.0022559999999999998, 0.004256, 0.006255999999999999, 0.008256, 0.010256, 0.012256, 0.014256, 0.016256, 0.018255999999999998, ... 0.30125599999999997, 0.30225599999999997, 0.30325599999999997, 0.30425599999999997, 0.30525599999999997, 0.306256, 0.307256, 0.308256, 0.309256, 0.310256], dtype='float64', name='time', length=186))
- CLASS :
- IMAGE
- IMAGE_SUBCLASS :
- IMAGE_INDEXED
- IMAGE_VERSION :
- 1.2
- board_temp :
- 0.0
- bottom :
- 1024
- camera :
- ccd_temp :
- 0.0
- codex :
- JP2
- date_time :
- 2013-09-25T13:05:51Z
- depth :
- 8
- description :
- Photron bullet camera A
- dims :
- ['time', 'height', 'width']
- exposure :
- 250.0
- file_format :
- IPX-1
- file_name :
- rba030420.ipx
- filter :
- format :
- IPX
- gain :
- [4.0, 0.0]
- hbin :
- 0
- height :
- 912
- is_color :
- 0
- left :
- 129
- lens :
- mds_name :
- None
- n_frames :
- 186
- name :
- rba
- offset :
- [0.0, 0.0]
- orientation :
- 0
- pre_exp :
- 0.0
- quality :
- Not Checked
- rank :
- 3
- right :
- 896
- shape :
- [186, 912, 768]
- shot :
- 30420
- shot_id :
- 30420
- signal_type :
- Image
- source :
- rba
- strobe :
- 0
- taps :
- 0
- top :
- 113
- trigger :
- -0.10000000149011612
- uda_name :
- RBA
- units :
- pixels
- uuid :
- 4a073a8f-aa2d-5deb-95df-91f93194c494
- vbin :
- 0
- version :
- -1
- view :
- Hl07 floor mount + FFC2 + 25mm lens + CII filter
- width :
- 768
plt.imshow(dataset.data[-10], cmap='gray')
<matplotlib.image.AxesImage at 0x3969f8990>
RBB#
RBB contains the data from Photron bullet camera B, which is looking at the central column.
A Photron Bullet Camera provides high-speed, high-resolution imaging of fast transient events in the plasma. Its ability to capture detailed images of plasma instabilities, turbulence, and disruptions makes it essential for understanding and controlling plasma behavior, ultimately aiding in the pursuit of sustained nuclear fusion.
dataset = catalog.level1.shots(url=url, group='rbb')
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 286, height: 448, width: 640) Coordinates: * time (time) float64 1.6e-05 0.002016 0.004016 ... 0.308 0.309 0.31 Dimensions without coordinates: height, width Data variables: data (time, height, width) uint8 dask.array<chunksize=(72, 112, 160), meta=np.ndarray> Attributes: (12/48) CLASS: IMAGE IMAGE_SUBCLASS: IMAGE_INDEXED IMAGE_VERSION: 1.2 board_temp: 0.0 bottom: 680 camera: ... ... units: pixels uuid: 10ed506a-3ac4-5e62-8a6b-25a7abfc3171 vbin: 0 version: -1 view: photron HM10 + Dalpha filter width: 640
- time: 286
- height: 448
- width: 640
- time(time)float641.6e-05 0.002016 ... 0.309 0.31
- units :
- s
array([1.60000e-05, 2.01600e-03, 4.01600e-03, ..., 3.08016e-01, 3.09016e-01, 3.10016e-01])
- data(time, height, width)uint8dask.array<chunksize=(72, 112, 160), meta=np.ndarray>
Array Chunk Bytes 78.20 MiB 1.23 MiB Shape (286, 448, 640) (72, 112, 160) Dask graph 64 chunks in 2 graph layers Data type uint8 numpy.ndarray
- timePandasIndex
PandasIndex(Index([ 1.6e-05, 0.002016, 0.004016, 0.006016, 0.008015999999999999, 0.010015999999999999, 0.012015999999999999, 0.014015999999999999, 0.016016, 0.018016, ... 0.301016, 0.302016, 0.303016, 0.304016, 0.305016, 0.306016, 0.307016, 0.308016, 0.309016, 0.31001599999999996], dtype='float64', name='time', length=286))
- CLASS :
- IMAGE
- IMAGE_SUBCLASS :
- IMAGE_INDEXED
- IMAGE_VERSION :
- 1.2
- board_temp :
- 0.0
- bottom :
- 680
- camera :
- ccd_temp :
- 0.0
- codex :
- JP2
- date_time :
- 2013-09-25T12:50:53Z
- depth :
- 8
- description :
- Photron bullet camera B
- dims :
- ['time', 'height', 'width']
- exposure :
- 10.0
- file_format :
- IPX-1
- file_name :
- rbb030420.ipx
- filter :
- format :
- IPX
- gain :
- [4.0, 0.0]
- hbin :
- 0
- height :
- 448
- is_color :
- 0
- left :
- 193
- lens :
- mds_name :
- None
- n_frames :
- 286
- name :
- rbb
- offset :
- [0.0, 0.0]
- orientation :
- 0
- pre_exp :
- 0.0
- quality :
- Not Checked
- rank :
- 3
- right :
- 832
- shape :
- [286, 448, 640]
- shot :
- 30420
- shot_id :
- 30420
- signal_type :
- Image
- source :
- rbb
- strobe :
- 0
- taps :
- 0
- top :
- 233
- trigger :
- -0.10000000149011612
- uda_name :
- RBB
- units :
- pixels
- uuid :
- 10ed506a-3ac4-5e62-8a6b-25a7abfc3171
- vbin :
- 0
- version :
- -1
- view :
- photron HM10 + Dalpha filter
- width :
- 640
plt.imshow(dataset.data[-10], cmap='gray')
<matplotlib.image.AxesImage at 0x39c1464d0>