!pip install pandas matplotlib zarr fsspec s3fs intake intake_xarray intake_parquet
Show code cell output Hide code cell output
Requirement already satisfied: pandas in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.3)
Requirement already satisfied: matplotlib in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (3.9.0)
Requirement already satisfied: zarr in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.15.0)
Requirement already satisfied: fsspec in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: s3fs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: intake in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.5)
Requirement already satisfied: intake_xarray in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.7.0)
Requirement already satisfied: intake_parquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.3.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (1.25.2)
Requirement already satisfied: contourpy>=1.0.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: asciitree in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.3.3)
Requirement already satisfied: fasteners in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.19)
Requirement already satisfied: numcodecs>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.12.1)
Requirement already satisfied: aiobotocore<3.0.0,>=2.5.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (2.13.0)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (3.9.5)
Requirement already satisfied: pyyaml in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (6.0.1)
Requirement already satisfied: appdirs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (1.4.4)
Requirement already satisfied: xarray>=02022 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2023.7.0)
Requirement already satisfied: dask>=2.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2024.4.1)
Requirement already satisfied: netcdf4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.6.4)
Requirement already satisfied: msgpack in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.0.8)
Requirement already satisfied: requests in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2.31.0)
Requirement already satisfied: fastparquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (2024.11.0)
Requirement already satisfied: pyarrow in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (12.0.1)
Requirement already satisfied: botocore<1.34.107,>=1.34.70 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.34.106)
Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.16.0)
Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (0.11.0)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (23.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.9.4)
Requirement already satisfied: click>=8.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (8.1.5)
Requirement already satisfied: cloudpickle>=1.5.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (3.0.0)
Requirement already satisfied: partd>=1.2.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (1.4.2)
Requirement already satisfied: toolz>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (0.12.1)
Requirement already satisfied: importlib-metadata>=4.13.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (7.1.0)
Requirement already satisfied: six>=1.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: cramjam>=2.3 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from fastparquet->intake_parquet) (2.9.0)
Requirement already satisfied: cftime in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (1.6.3)
Requirement already satisfied: certifi in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (2024.2.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (2.2.1)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (1.0.1)
Requirement already satisfied: zipp>=0.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from importlib-metadata>=4.13.0->dask>=2.2->intake_xarray) (3.18.1)
Requirement already satisfied: locket in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from partd>=1.2.0->dask>=2.2->intake_xarray) (1.0.0)
import intake
import numpy as np
import matplotlib.pyplot as plt
First let’s take a look at the top level shots. In this table we can find all of the metadata we have about particular shots.
catalog = intake.open_catalog('https://mastapp.site/intake/catalog.yml')
shots_df = catalog.index.level1.shots().read()
shots_df
url | preshot_description | postshot_description | campaign | current_range | divertor_config | plasma_shape | comissioner | facility | shot_id | ... | cpf_vol_ipmax | cpf_vol_max | cpf_vol_truby | cpf_wmhd_ipmax | cpf_wmhd_max | cpf_wmhd_truby | cpf_zeff_ipmax | cpf_zeff_max | cpf_zeff_truby | cpf_zmag_efit | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | s3://mast/level1/shots/11695.zarr | \n0.1T TF SHOT\n | \nOK\n | M5 | None | Conventional | None | None | MAST | 11695 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | s3://mast/level1/shots/11696.zarr | \nSTANDARD 0.3T TF SHOT\n | \nOK\n | M5 | None | Conventional | None | None | MAST | 11696 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | s3://mast/level1/shots/11697.zarr | \nRAISE TO 0.5T\n | \nOK, ALARMS ARE LOWER\n | M5 | None | Conventional | None | None | MAST | 11697 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | s3://mast/level1/shots/11698.zarr | \nRAISE TO .56T\n | \nSTILL ALARMS BUT LOWER AGAIN\n | M5 | None | Conventional | None | None | MAST | 11698 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | s3://mast/level1/shots/11699.zarr | \nRAISE TO .58T\n | \nOK\n | M5 | None | Conventional | None | None | MAST | 11699 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
15916 | s3://mast/level1/shots/30467.zarr | \nRepeat with new neutron camera position.\ncH... | \nTwo times lower DD neutron rate than referen... | M9 | 700 kA | Conventional | Connected Double Null | None | MAST | 30467 | ... | 9.029202 | 9.046394 | 0.0 | 49469.122469 | 52653.445 | 0.0 | NaN | NaN | NaN | 0.013202 |
15917 | s3://mast/level1/shots/30468.zarr | \nRepeat with new neutron camera position.\ncH... | \nGood beam.\nGood repeat.\n | M9 | 700 kA | Conventional | Lower Single Null | None | MAST | 30468 | ... | 9.102411 | 9.107017 | 0.0 | 48516.962675 | 49382.133 | 0.0 | NaN | NaN | NaN | 0.012445 |
15918 | s3://mast/level1/shots/30469.zarr | \nRepeat with increased beam power (74 kV)\ncH... | \nGood shot. Modes present.\n | M9 | 700 kA | Conventional | Connected Double Null | None | MAST | 30469 | ... | 8.988730 | 9.047923 | 0.0 | 47466.249616 | 49115.805 | 0.0 | NaN | NaN | NaN | 0.015299 |
15919 | s3://mast/level1/shots/30470.zarr | \nRepeat last using hydrogen in outboard and c... | \nNo HF gas.\n | M9 | 700 kA | Conventional | None | None | MAST | 30470 | ... | 9.687049 | 10.055509 | 0.0 | 17290.432865 | 22310.516 | 0.0 | NaN | NaN | NaN | 0.015164 |
15920 | s3://mast/level1/shots/30471.zarr | \nThe last plasma:\nConvert to i/b Helios 1724... | \nGood shot.\n | M9 | 700 kA | Conventional | Lower Single Null | None | MAST | 30471 | ... | 8.817559 | 9.283702 | 0.0 | 38063.582380 | 40906.090 | 0.0 | NaN | NaN | NaN | 0.014340 |
15921 rows × 283 columns
EFIT Data#
This notebook contains some examples of loading and plotting equillibrium reconstruction data from EFIT.
First we can have a look at how many EFIT reconstructions are in the database:
catalog = intake.open_catalog('https://mastapp.site/intake/catalog.yml')
sources_df = catalog.index.level1.sources().read()
sources_df = sources_df.loc[(sources_df.name == 'efm')]
sources_df
description | quality | uuid | shot_id | name | url | |
---|---|---|---|---|---|---|
2 | Basic EFIT | Not Checked | fd0a0dc4-1ed8-546f-8c02-455061374fd4 | 11695 | efm | s3://mast/level1/shots/11695.zarr/efm |
6 | Basic EFIT | Not Checked | c553a338-249f-58d5-9ba8-14f5c507c4e4 | 11696 | efm | s3://mast/level1/shots/11696.zarr/efm |
10 | Basic EFIT | Not Checked | f2ce95e9-bfe8-595d-a1eb-d860de377ab2 | 11697 | efm | s3://mast/level1/shots/11697.zarr/efm |
14 | Basic EFIT | Not Checked | f1fbd4b8-d68b-54bd-a9c0-209fddf9cef0 | 11698 | efm | s3://mast/level1/shots/11698.zarr/efm |
18 | Basic EFIT | Not Checked | 798d44ea-0773-5020-8c3c-083b1bdb3aab | 11699 | efm | s3://mast/level1/shots/11699.zarr/efm |
... | ... | ... | ... | ... | ... | ... |
307982 | Basic EFIT | Not Checked | 72422662-d3dd-5bb9-abdc-5e5e3427587e | 30467 | efm | s3://mast/level1/shots/30467.zarr/efm |
308017 | Basic EFIT | Not Checked | 5f073f88-7f09-53ca-b204-e9c620b0672d | 30468 | efm | s3://mast/level1/shots/30468.zarr/efm |
308052 | Basic EFIT | Not Checked | 0bcd11d2-f8f5-5ca3-94e6-235c13b1434d | 30469 | efm | s3://mast/level1/shots/30469.zarr/efm |
308087 | Basic EFIT | Not Checked | 91cbcfda-7434-55be-a760-80493d6e8f46 | 30470 | efm | s3://mast/level1/shots/30470.zarr/efm |
308122 | Basic EFIT | Not Checked | 1b50bfb9-e9f3-5c23-8f5b-5821e441d1b7 | 30471 | efm | s3://mast/level1/shots/30471.zarr/efm |
13621 rows × 6 columns
Let’s look at the data for a particular shot. Here we are going to use shot 30420 as an example. Below we get the url for the efm
data.
shot_id = 30420
url = sources_df.loc[sources_df.shot_id == shot_id].iloc[0].url
url
's3://mast/level1/shots/30420.zarr/efm'
efm
source holds the EFIT data as a single dataset.
dataset = catalog.level1.sources(url=url)
dataset = dataset.to_dask()
dataset
<xarray.Dataset> Dimensions: (time: 64, psi_norm: 65, n_iterations: 10, fcoil_seg_n: 938, fcoil_n: 101, ffprime_coefs_n: 2, mag_probe_n: 78, psi_loop_n: 46, r: 65, z: 65, profile_r: 129, lcfs_coords: 147, limiter_n: 37, pprime_coefs_n: 2, profile_z: 65) Coordinates: (12/13) * fcoil_n (fcoil_n) float32 0.0 1.0 2.0 3.0 ... 98.0 99.0 100.0 * ffprime_coefs_n (ffprime_coefs_n) float32 0.0 1.0 * lcfs_coords (lcfs_coords) float32 0.0 1.0 2.0 ... 144.0 145.0 146.0 * mag_probe_n (mag_probe_n) float32 0.0 1.0 2.0 3.0 ... 75.0 76.0 77.0 * n_iterations (n_iterations) float32 0.0 1.0 2.0 3.0 ... 7.0 8.0 9.0 * pprime_coefs_n (pprime_coefs_n) float32 0.0 1.0 ... ... * profile_z (profile_z) float32 -2.0 -1.938 -1.875 ... 1.938 2.0 * psi_loop_n (psi_loop_n) float32 0.0 1.0 2.0 3.0 ... 43.0 44.0 45.0 * psi_norm (psi_norm) float32 0.0 0.01562 0.03125 ... 0.9844 1.0 * r (r) float32 0.06 0.09031 0.1206 0.1509 ... 1.939 1.97 2.0 * time (time) float32 -0.05 -0.045 -0.04 ... 0.29 0.295 0.3 * z (z) float32 -2.0 -1.938 -1.875 -1.812 ... 1.875 1.938 2.0 Dimensions without coordinates: fcoil_seg_n, limiter_n Data variables: (12/151) all_times (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> areap_c (time, psi_norm) float32 dask.array<chunksize=(64, 65), meta=np.ndarray> betan (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betap (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betapd (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> betat (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> ... ... wpol (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint1_rc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint1_zc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint2_rc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> xpoint2_zc (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> zbdry (time) float32 dask.array<chunksize=(64,), meta=np.ndarray> Attributes: description: Basic EFIT file_name: efm0304.20 format: IDA3 mds_name: None name: efm quality: Not Checked shot_id: 30420 signal_type: Analysed source: efm uda_name: EFM uuid: 1e39c600-8ffb-5f56-900d-2941e352319c version: 0
xarray.Dataset
- time: 64
- psi_norm: 65
- n_iterations: 10
- fcoil_seg_n: 938
- fcoil_n: 101
- ffprime_coefs_n: 2
- mag_probe_n: 78
- psi_loop_n: 46
- r: 65
- z: 65
- profile_r: 129
- lcfs_coords: 147
- limiter_n: 37
- pprime_coefs_n: 2
- profile_z: 65
- fcoil_n(fcoil_n)float320.0 1.0 2.0 3.0 ... 98.0 99.0 100.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100.], dtype=float32)
- ffprime_coefs_n(ffprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- lcfs_coords(lcfs_coords)float320.0 1.0 2.0 ... 144.0 145.0 146.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142., 143., 144., 145., 146.], dtype=float32)
- mag_probe_n(mag_probe_n)float320.0 1.0 2.0 3.0 ... 75.0 76.0 77.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.], dtype=float32)
- n_iterations(n_iterations)float320.0 1.0 2.0 3.0 ... 6.0 7.0 8.0 9.0
- units :
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32)
- pprime_coefs_n(pprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- profile_r(profile_r)float320.0 0.01562 0.03125 ... 1.97 2.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.06 , 0.0625 , 0.078125, 0.090312, 0.09375 , 0.109375, 0.120625, 0.125 , 0.140625, 0.150937, 0.15625 , 0.171875, 0.18125 , 0.1875 , 0.203125, 0.211563, 0.21875 , 0.234375, 0.241875, 0.25 , 0.265625, 0.272188, 0.28125 , 0.296875, 0.3025 , 0.3125 , 0.328125, 0.332813, 0.34375 , 0.359375, 0.363125, 0.375 , 0.390625, 0.393438, 0.40625 , 0.421875, 0.42375 , 0.4375 , 0.453125, 0.454063, 0.46875 , 0.484375, 0.5 , 0.514687, 0.515625, 0.53125 , 0.545 , 0.546875, 0.5625 , 0.575312, 0.578125, 0.59375 , 0.605625, 0.609375, 0.625 , 0.635938, 0.640625, 0.65625 , 0.66625 , 0.671875, 0.6875 , 0.696563, 0.703125, 0.71875 , 0.726875, 0.734375, 0.75 , 0.757188, 0.765625, 0.78125 , 0.7875 , 0.796875, 0.8125 , 0.817813, 0.828125, 0.84375 , 0.848125, 0.859375, 0.875 , 0.878438, 0.890625, 0.90625 , 0.90875 , 0.921875, 0.9375 , 0.939063, 0.953125, 0.96875 , 0.969375, 0.984375, 0.999688, 1. , 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- profile_z(profile_z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- psi_loop_n(psi_loop_n)float320.0 1.0 2.0 3.0 ... 43.0 44.0 45.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45.], dtype=float32)
- psi_norm(psi_norm)float320.0 0.01562 0.03125 ... 0.9844 1.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.0625 , 0.078125, 0.09375 , 0.109375, 0.125 , 0.140625, 0.15625 , 0.171875, 0.1875 , 0.203125, 0.21875 , 0.234375, 0.25 , 0.265625, 0.28125 , 0.296875, 0.3125 , 0.328125, 0.34375 , 0.359375, 0.375 , 0.390625, 0.40625 , 0.421875, 0.4375 , 0.453125, 0.46875 , 0.484375, 0.5 , 0.515625, 0.53125 , 0.546875, 0.5625 , 0.578125, 0.59375 , 0.609375, 0.625 , 0.640625, 0.65625 , 0.671875, 0.6875 , 0.703125, 0.71875 , 0.734375, 0.75 , 0.765625, 0.78125 , 0.796875, 0.8125 , 0.828125, 0.84375 , 0.859375, 0.875 , 0.890625, 0.90625 , 0.921875, 0.9375 , 0.953125, 0.96875 , 0.984375, 1. ], dtype=float32)
- r(r)float320.06 0.09031 0.1206 ... 1.97 2.0
- units :
- m
array([0.06 , 0.090312, 0.120625, 0.150937, 0.18125 , 0.211563, 0.241875, 0.272188, 0.3025 , 0.332813, 0.363125, 0.393438, 0.42375 , 0.454063, 0.484375, 0.514687, 0.545 , 0.575312, 0.605625, 0.635938, 0.66625 , 0.696563, 0.726875, 0.757188, 0.7875 , 0.817813, 0.848125, 0.878438, 0.90875 , 0.939063, 0.969375, 0.999688, 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- time(time)float32-0.05 -0.045 -0.04 ... 0.295 0.3
- units :
- S
array([-0.05 , -0.045, -0.04 , -0.035, -0.03 , -0.025, -0.02 , -0.015, -0.01 , -0.005, 0. , 0.04 , 0.045, 0.05 , 0.055, 0.06 , 0.065, 0.07 , 0.075, 0.08 , 0.085, 0.09 , 0.095, 0.1 , 0.105, 0.11 , 0.115, 0.12 , 0.125, 0.13 , 0.135, 0.14 , 0.145, 0.15 , 0.155, 0.16 , 0.165, 0.17 , 0.175, 0.18 , 0.185, 0.19 , 0.195, 0.2 , 0.205, 0.21 , 0.215, 0.22 , 0.225, 0.23 , 0.235, 0.24 , 0.245, 0.25 , 0.255, 0.26 , 0.265, 0.27 , 0.275, 0.28 , 0.285, 0.29 , 0.295, 0.3 ], dtype=float32)
- z(z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- all_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of attempted reconstruction (time base A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:ALL_TIMES
- name :
- efm/all_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ALL_TIMES
- units :
- s
- uuid :
- b7d2df9a-4fb1-5174-9350-8eadc6d3544e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - areap_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal area enclosed by flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol area of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:AREAP_C
- name :
- efm/areap_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_AREAP_(C)
- units :
- m ** 2
- uuid :
- cda04872-e742-5145-86c0-e3fb6c3828eb
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betan(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Normalised beta, efm_betat * | plasma minor radius (m) * vacuum toroidal B field at magnetic axis (T) / plasma current (MA) |; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- betat/(I/ a Bvac_geom)
- mds_name :
- \TOP.ANALYSED.EFM:BETAN
- name :
- efm/betan
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAN
- units :
- T
- uuid :
- c0db4373-b67d-51c5-8c42-ba1f42d47461
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betap(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal beta, volume-averaged pressure * 2 * mu_0 / <Bp>^2, Bp = averaged poloidal B field around LCFS (T), mu_0*I_plasma/integral(dl); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAP
- name :
- efm/betap
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAP
- units :
- uuid :
- 509acbb3-d182-5a9d-9a62-e95e36587d07
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betapd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETAPD
- name :
- efm/betapd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAPD
- units :
- uuid :
- b368f633-dd58-5fc0-b5ae-ad89e1ad3a03
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betat(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal beta, volume-averaged pressure * 2 * mu_0 / Bphi^2, Bphi = vacuum toroidal B field at magnetic axis (T); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAT
- name :
- efm/betat
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAT
- units :
- %
- uuid :
- 31cb8e3a-3b82-5189-aeac-51afc7d37598
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betatd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETATD
- name :
- efm/betatd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETATD
- units :
- uuid :
- cfd99e7d-0996-500a-9ce9-c1049a65cf47
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rgeom(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal B field (total) at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RGEOM
- name :
- efm/bphi_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RGEOM
- units :
- T
- uuid :
- 56188c7e-5ed0-58c9-a45e-3956dd976e00
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rmag(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal B field (total) at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RMAG
- name :
- efm/bphi_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RMAG
- units :
- T
- uuid :
- 30855da8-9b93-5f15-8020-15466cfcdfda
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_squared(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- plasma volume integral of (total toroidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi^2 dV
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_SQUARED
- name :
- efm/bphi_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- e267f5cf-2189-5678-9421-009da412c98d
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bpol_squared(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- plasma volume integral of (total poloidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bpol dV
- mds_name :
- \TOP.ANALYSED.EFM:BPOL_SQUARED
- name :
- efm/bpol_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPOL_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- 34fe2d69-9528-538e-a752-95a72a29c716
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Reference radius for efm_bvac_val; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius at where B_phi=_b
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_R
- name :
- efm/bvac_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_R
- units :
- m
- uuid :
- 8a236221-c3d2-5268-91aa-5055de097af1
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rgeom(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RGEOM
- name :
- efm/bvac_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RGEOM
- units :
- T
- uuid :
- 5efaa422-e4b9-5390-b2c4-e6cc58c50f97
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rmag(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RMAG
- name :
- efm/bvac_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RMAG
- units :
- T
- uuid :
- b3d92487-954b-540a-8bdd-ba31aab20633
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_val(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Reference vacuum toroidal B field at efm_bvac_r; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Vacuum toroidal field at
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_VAL
- name :
- efm/bvac_val
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_VAL
- units :
- T
- uuid :
- 93aa280a-d1fe-518c-8f09-36bfbabe318e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - chisq_magnetic(time, n_iterations)float32dask.array<chunksize=(64, 10), meta=np.ndarray>
- description :
- Magnetic fit total chi-squared for each iteration; f(num_iterations, A)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM.CHISQ:MAGNETIC
- name :
- efm/chisq_magnetic
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 10]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CHISQ_MAGNETIC
- units :
- uuid :
- ba60cd4c-f747-5b08-885b-16bd90fa837d
- version :
- 0
Array Chunk Bytes 2.50 kiB 2.50 kiB Shape (64, 10) (64, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cm_bdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Normalised psi at detected boundary surface; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- computed normalized psi_
- mds_name :
- \TOP.ANALYSED.EFM:CM_BDRY
- name :
- efm/cm_bdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CM_BDRY
- units :
- uuid :
- f9bc58cb-754d-5ded-99f3-7cc4c750ef59
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cnvrgd_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_TIME
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:CNVRGD_TIMES
- name :
- efm/cnvrgd_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CNVRGD_TIMES
- units :
- s
- uuid :
- 031cc89b-f777-5d24-aaf2-896a98a7e19f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_R
- name :
- efm/current_centrd_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_R
- units :
- m
- uuid :
- 36f75534-498b-57bd-a552-d6a46c2525c5
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_z(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- height of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_Z
- name :
- efm/current_centrd_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_Z
- units :
- m
- uuid :
- 8bbf0f75-10c2-5e30-93ca-5ac50ff103b3
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cutip()float32...
- description :
- Plasma current cut-off; currents below this imply vacuum reconstruction
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Ip threshold current
- mds_name :
- \TOP.ANALYSED.EFM:CUTIP
- name :
- efm/cutip
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CUTIP
- units :
- A
- uuid :
- a8ab9ea9-5b86-541d-86b4-54a44a90a82c
- version :
- 0
[1 values with dtype=float32]
- diamag_fluxc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Output (computed) diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:C
- name :
- efm/diamag_fluxc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(C)
- units :
- Wb
- uuid :
- 0e65f3a5-c0da-5528-b08b-c50f6328af23
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - diamag_fluxx(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Input (experimental) diamagnetic flux; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:X
- name :
- efm/diamag_fluxx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(X)
- units :
- Wb
- uuid :
- fdd4b47d-e12d-561f-b89e-97acf3312b15
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Elongation of LCFS; (Zmax-Zmin)/(Rmax-Rmin); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation
- mds_name :
- \TOP.ANALYSED.EFM:ELONGATION
- name :
- efm/elongation
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION
- units :
- uuid :
- bcc6df16-757c-5a48-a08b-66213b67316c
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Limit of elongation at magnetic axis, from flux differentials; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation on Magnetic A
- mds_name :
- \TOP.ANALYSED.EFM.ELONGATION_:AXIS
- name :
- efm/elongation_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION_AXIS
- units :
- uuid :
- d1854228-74d4-57f9-b79a-2503d35ded47
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Elongation of flux surfaces; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- elongation of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:ELONG_PSI_C
- name :
- efm/elongpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONG(PSI)_(C)
- units :
- uuid :
- 1e600730-9338-5d94-8f7c-29ffebc3863c
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang1(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of first type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 1
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG1
- name :
- efm/fcoil_ang1
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG1
- units :
- deg
- uuid :
- 6942ccc3-610d-5f4d-8a85-ebe7f9ff2800
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang2(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of second type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 2
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG2
- name :
- efm/fcoil_ang2
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG2
- units :
- deg
- uuid :
- 9334660c-125d-5dd8-be46-4af1803ef64e
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_c(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Output (computed) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Computed f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_C
- name :
- efm/fcoil_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(C)
- units :
- A
- uuid :
- 88d8d3ed-53e1-512e-b37b-d57d2b097292
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_chisq(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Chi-squared of each fitted f-coil; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each f-coil
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CHISQ
- name :
- efm/fcoil_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CHISQ
- units :
- uuid :
- 512a9812-48cc-528f-9af9-4b633366ec9d
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_circ(fcoil_seg_n)float64dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Circuit number of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil circuit
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CIRC
- name :
- efm/fcoil_circ
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CIRC
- units :
- uuid :
- 55b009a2-d6a4-534c-8da1-a04dd6ecb1eb
- version :
- 0
Array Chunk Bytes 7.33 kiB 7.33 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - fcoil_height(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_HEIGHT
- name :
- efm/fcoil_height
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_HEIGHT
- units :
- m
- uuid :
- cda552cd-454d-5b4c-8783-f299242be50d
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_r(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Radius
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_R
- name :
- efm/fcoil_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_R
- units :
- m
- uuid :
- 0fe95de9-0141-5d40-9b5f-016adba85b5e
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_turns(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Number of turns represented by each f-coil elements; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_TURNS
- name :
- efm/fcoil_turns
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_TURNS
- units :
- deg
- uuid :
- 6baebdf3-512d-552e-bde1-71876bf5885c
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_width(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Width
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_WIDTH
- name :
- efm/fcoil_width
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_WIDTH
- units :
- m
- uuid :
- f3afe543-951e-5023-a156-164e78d05458
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_x(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- Input (experimental) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Measured f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_X
- name :
- efm/fcoil_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(X)
- units :
- A
- uuid :
- 42b92f1d-3050-5101-a821-a717b44db81f
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_xmult(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Multiplier for each f-coil element to weight current within coil, e.g. by area; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns multiplier
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_XMULT
- name :
- efm/fcoil_xmult
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_XMULT
- units :
- deg
- uuid :
- 72c999a4-3312-572d-9eab-a7e484696661
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_z(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_Z
- name :
- efm/fcoil_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_Z
- units :
- m
- uuid :
- 88b774bc-3b72-52c9-a8b1-8721c0d241ab
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcurbd()float32...
- description :
- ff' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- FFprime Boundary Conditi
- mds_name :
- \TOP.ANALYSED.EFM:FCURBD
- name :
- efm/fcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCURBD
- units :
- uuid :
- c0bc5583-fc0d-5178-a9e5-568fbb8f7ac8
- version :
- 0
[1 values with dtype=float32]
- ffprime(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- ff' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- ffprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:FFPRIME
- name :
- efm/ffprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME
- units :
- T-rad
- uuid :
- 729dd97f-a12c-5e34-b962-d66f44ef306b
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ffprime_coefs(time, ffprime_coefs_n)float32dask.array<chunksize=(64, 2), meta=np.ndarray>
- description :
- Coefficients of ff' profile representation
- dims :
- ['time', 'ffprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- FFPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM.FFPRIME_:COEFS
- name :
- efm/ffprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME_COEFS
- units :
- uuid :
- 43ae35d0-7c31-5853-8b2f-aa2f368e9e9f
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64, 2) (64, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - final_chisq(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Total chi-squared of fit; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM:FINAL_CHISQ
- name :
- efm/final_chisq
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FINAL_CHISQ
- units :
- uuid :
- d2ab7586-6417-517f-8fd6-8579e32ab6a9
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal current flux function, f=R*Bphi; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed f=R*B (centre t
- mds_name :
- \TOP.ANALYSED.EFM:F_PSI_C
- name :
- efm/fpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_F(PSI)_(C)
- units :
- T-m
- uuid :
- 295574ab-d34d-501d-ae8d-5e3936a38fc2
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Fit weights for LCFS position constraint
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- fwtpre
- mds_name :
- \TOP.ANALYSED.EFM:FWTBDRY
- name :
- efm/fwtbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBDRY
- units :
- uuid :
- 7a0cbc6d-f993-599a-9ccb-866866f5a503
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbp()float32...
- description :
- Flag to make p' and ff' proportional
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime and FFPrime Propo
- mds_name :
- \TOP.ANALYSED.EFM:FWTBP
- name :
- efm/fwtbp
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBP
- units :
- uuid :
- 85759ea5-4c77-5cef-b1f1-d93a8673fd95
- version :
- 0
[1 values with dtype=float32]
- fwtfc(time, fcoil_n)float32dask.array<chunksize=(64, 101), meta=np.ndarray>
- description :
- f-coil circuit fit weights; f(fcoil_n)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of f-coils
- mds_name :
- \TOP.ANALYSED.EFM:FWTFC
- name :
- efm/fwtfc
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 101]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTFC
- units :
- uuid :
- 004b5907-3080-522c-a673-0a7d19c4b340
- version :
- 0
Array Chunk Bytes 25.25 kiB 25.25 kiB Shape (64, 101) (64, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtmp(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Magnetic detector fit weights; f(magpr_n)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of mag signal
- mds_name :
- \TOP.ANALYSED.EFM:FWTMP
- name :
- efm/fwtmp
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTMP
- units :
- uuid :
- 4386803e-5d35-528f-a009-99cdbf472b1a
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtsi(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Flux loop fit weights; f(silop_n)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of flux loop
- mds_name :
- \TOP.ANALYSED.EFM:FWTSI
- name :
- efm/fwtsi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTSI
- units :
- uuid :
- 6c6f4ba4-6530-509b-a0a0-b898b88ae2e2
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Radius
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:R_C
- name :
- efm/geom_axis_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_R(C)
- units :
- m
- uuid :
- 32abfece-8a73-5b9a-bd32-915602c2504f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Height
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:Z_C
- name :
- efm/geom_axis_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_Z(C)
- units :
- m
- uuid :
- 447d2d04-0300-5a44-9912-7aaf5256455e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridr(r)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- R grid for 2D outputs; f(nr)
- dims :
- ['r']
- file_name :
- None
- format :
- None
- label :
- r-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_R
- name :
- efm/gridr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(R)
- units :
- m
- uuid :
- 8848940c-90c5-55df-9c77-35fdf3a603a4
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridz(z)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- Z grid for 2D outputs; f(nz)
- dims :
- ['z']
- file_name :
- None
- format :
- None
- label :
- z-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_Z
- name :
- efm/gridz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(Z)
- units :
- m
- uuid :
- cbc01f56-14cc-5be2-b354-a44abf5abb40
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ip_times(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of attempted reconstruction for which plasma is present (time base C)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:IP_TIMES
- name :
- efm/ip_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IP_TIMES
- units :
- s
- uuid :
- 28913cd6-ffdc-57e1-8e42-9e8fb1f57044
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - irod(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Toroidal rod current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- toroidal rod current
- mds_name :
- \TOP.ANALYSED.EFM:IROD
- name :
- efm/irod
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IROD
- units :
- A-T
- uuid :
- 31ffb6f2-be4f-563e-a7bb-1a853f089cd2
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - iteration_error(time, n_iterations)float32dask.array<chunksize=(64, 10), meta=np.ndarray>
- description :
- Goodness of convergence criterion for each iteration; f(num_iterations, B)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Iteration error
- mds_name :
- \TOP.ANALYSED.EFM.ITERATION:ERROR
- name :
- efm/iteration_error
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 10]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ITERATION_ERROR
- units :
- uuid :
- 890879c4-0a3d-5de0-8144-f9e4233819ad
- version :
- 0
Array Chunk Bytes 2.50 kiB 2.50 kiB Shape (64, 10) (64, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - jr(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Toroidal plasma current density at Z=0 running from inboard to outboard in R; f(nr, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- Jphi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:J_R
- name :
- efm/jr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_J(R)
- units :
- uuid :
- e785cb91-61ba-5363-8aa7-fd2e66fb1b4e
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - kffcur()float64...
- description :
- Number of ff' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of FFprime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KFFCUR
- name :
- efm/kffcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFCUR
- units :
- uuid :
- 6aacce3c-9816-5036-8fc1-c612ae201c7d
- version :
- 0
[1 values with dtype=float64]
- kfffnc()float64...
- description :
- ff' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KFFFNC
- name :
- efm/kfffnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFFNC
- units :
- uuid :
- 2e2872a1-a56b-5f26-aeaa-062d86c8f99a
- version :
- 0
[1 values with dtype=float64]
- kppcur()float64...
- description :
- Number of p' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KPPCUR
- name :
- efm/kppcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPCUR
- units :
- uuid :
- 42652d41-1a2b-57a1-96f8-c992dc0a7a1d
- version :
- 0
[1 values with dtype=float64]
- kppfnc()float64...
- description :
- p' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KPPFNC
- name :
- efm/kppfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPFNC
- units :
- uuid :
- 3956ffcf-a0d9-519b-b3d0-9dae3bc12dc4
- version :
- 0
[1 values with dtype=float64]
- kwwcur()float64...
- description :
- Number of pw' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of P(Rot) Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KWWCUR
- name :
- efm/kwwcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWCUR
- units :
- uuid :
- 2a44700a-7b6c-549b-8a33-371aebecea0d
- version :
- 0
[1 values with dtype=float64]
- kwwfnc()float64...
- description :
- pw' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KWWFNC
- name :
- efm/kwwfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWFNC
- units :
- uuid :
- 00f8b868-d0af-5c1e-b6f3-5764c56b55eb
- version :
- 0
[1 values with dtype=float64]
- lcfs_length(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Length of poloidal cross-section of LCFS; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- length of lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_LENGTH
- name :
- efm/lcfs_length
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS_LENGTH
- units :
- m
- uuid :
- d663ddf5-7aa2-546f-94b0-ec9dbeb0d439
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_r(time, lcfs_coords)float32dask.array<chunksize=(64, 147), meta=np.ndarray>
- description :
- LCFS R coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- r-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_R_C
- name :
- efm/lcfsr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2600]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(R)_(C)
- units :
- m
- uuid :
- e5dfae60-bbcc-594f-a009-fe925a30cb56
- version :
- 0
Array Chunk Bytes 36.75 kiB 36.75 kiB Shape (64, 147) (64, 147) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_z(time, lcfs_coords)float32dask.array<chunksize=(64, 147), meta=np.ndarray>
- description :
- LCFS Z coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- z-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_Z_C
- name :
- efm/lcfsz_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2600]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(Z)_(C)
- units :
- m
- uuid :
- b7cccb45-5cb3-574e-9a7e-03248a416f2a
- version :
- 0
Array Chunk Bytes 36.75 kiB 36.75 kiB Shape (64, 147) (64, 147) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfsn_c(time)float64dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Number of LCFS coordinate points; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- No. of coords on lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_N_C
- name :
- efm/lcfsn_c
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(N)_(C)
- units :
- uuid :
- 40983563-a4d5-5bd9-add4-e96b36795023
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - li(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma internal inductance, vol avg (Bp^2) / surf avg (Bp)^2; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Inductance
- mds_name :
- \TOP.ANALYSED.EFM:LI
- name :
- efm/li
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LI
- units :
- uuid :
- 8477215a-950b-584e-a482-848eb28d6b6a
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterr(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- R co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Radius
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_R
- name :
- efm/limiterr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(R)
- units :
- m
- uuid :
- 73dde2af-4374-51ce-a5a8-fecd9560cba6
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterz(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- Z co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Height
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_Z
- name :
- efm/limiterz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(Z)
- units :
- m
- uuid :
- 2d3888a5-604f-530f-9c1e-f2488b997d0a
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_r(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- R co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_R
- name :
- efm/magnetic_axis_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_R
- units :
- m
- uuid :
- dd081d76-7df6-56a5-a87e-8e30403e5283
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_z(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Z co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_Z
- name :
- efm/magnetic_axis_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_Z
- units :
- m
- uuid :
- 3ada1264-043f-58e0-94af-3b2210ddf5f8
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_ang(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining angular skew of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Angle
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_ANG
- name :
- efm/magpr_ang
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_ANG
- units :
- deg
- uuid :
- cf0344ce-f800-54cb-9c04-c45b65509417
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_c(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Computed magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_C
- name :
- efm/magpr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(C)
- units :
- T
- uuid :
- 140c8311-4680-5029-98a5-b37771e66280
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_len(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining length of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Length
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_LEN
- name :
- efm/magpr_len
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_LEN
- units :
- m
- uuid :
- 0f4e84d7-9ff5-5641-b9a5-ddfe5b41d99f
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_r(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- R of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_R
- name :
- efm/magpr_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_R
- units :
- m
- uuid :
- 53aed4a5-9f8c-5bc0-b9e6-c8893224ea2c
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_x(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Measured magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_X
- name :
- efm/magpr_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(X)
- units :
- T
- uuid :
- c0ff6e1d-723f-59df-9257-93b1853e397a
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_z(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Z of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_Z
- name :
- efm/magpr_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_Z
- units :
- m
- uuid :
- d3f6a120-771f-5a5c-b77d-51ba8cf70341
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpri_chisq(time, mag_probe_n)float32dask.array<chunksize=(64, 78), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic field probe; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each magnetic
- mds_name :
- \TOP.ANALYSED.EFM:MAGPRI_CHISQ
- name :
- efm/magpri_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 78]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPRI_CHISQ
- units :
- uuid :
- d75b0d2a-d00b-5708-aa38-12ba81466f52
- version :
- 0
Array Chunk Bytes 19.50 kiB 19.50 kiB Shape (64, 78) (64, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - minor_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Minor radius of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Minor Radius
- mds_name :
- \TOP.ANALYSED.EFM:MINOR_RADIUS
- name :
- efm/minor_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MINOR_RADIUS
- units :
- m
- uuid :
- a221f003-19e0-5589-8378-ab4b55407364
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - nh()float64...
- description :
- Number of vertical grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NH
- name :
- efm/nh
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NH
- units :
- uuid :
- c68811ac-f71c-57dd-ad68-54d2df6e0075
- version :
- 0
[1 values with dtype=float64]
- npress()float64...
- description :
- Number of pressure constraints
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- No. of pressure constrai
- mds_name :
- \TOP.ANALYSED.EFM:NPRESS
- name :
- efm/npress
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NPRESS
- units :
- uuid :
- 8c183e04-e4a2-5458-8886-b23cce6fb7d2
- version :
- 0
[1 values with dtype=float64]
- num_iterations(time)float64dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Number of iterations; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- number of iterations
- mds_name :
- \TOP.ANALYSED.EFM.NUM:ITERATIONS
- name :
- efm/num_iterations
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NUM_ITERATIONS
- units :
- uuid :
- d34f53c3-011b-5fe4-aea2-bc2865c179b2
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - nw()float64...
- description :
- Number of horizontal grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NW
- name :
- efm/nw
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NW
- units :
- uuid :
- 65f6da9a-16a2-56d2-a15b-4b7d100cd164
- version :
- 0
[1 values with dtype=float64]
- p2ar_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Non-rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (non-rotational par
- mds_name :
- \TOP.ANALYSED.EFM:P2A_R_C
- name :
- efm/p2ar_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2A(R)_(C)
- units :
- Pa
- uuid :
- 976a8e19-f85a-5952-aa6f-5e953a4e8594
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2br_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Coefficient of rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- pw(r) (rotational part)
- mds_name :
- \TOP.ANALYSED.EFM:P2B_R_C
- name :
- efm/p2br_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2B(R)_(C)
- units :
- Pa
- uuid :
- e339ce02-2da8-5c93-b4de-4db8f03057bf
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2cr_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- contribution of pw(r) to
- mds_name :
- \TOP.ANALYSED.EFM:P2C_R_C
- name :
- efm/p2cr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2C(R)_(C)
- units :
- Pa
- uuid :
- 75054c75-2b83-5320-b11a-d3912e35600f
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - passnumber()float64...
- description :
- MAST scheduler pass number
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Pass
- mds_name :
- \TOP.ANALYSED.EFM:PASSNUMBER
- name :
- efm/passnumber
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PASSNUMBER
- units :
- uuid :
- 8d1335f3-b16c-50ba-8c0a-0e67c75a5dca
- version :
- 0
[1 values with dtype=float64]
- pcurbd()float32...
- description :
- p' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:PCURBD
- name :
- efm/pcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PCURBD
- units :
- uuid :
- 5f570b49-2b37-5290-a3d7-7e3e15b9df24
- version :
- 0
[1 values with dtype=float32]
- plasma_area(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Area of poloidal cross-section of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Area
- mds_name :
- \TOP.ANALYSED.EFM:PLASMA_AREA
- name :
- efm/plasma_area
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_AREA
- units :
- m ** 2
- uuid :
- cba97a4d-dd14-535f-a073-4ed8c6f8c137
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_c(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Output (computed) fitted total plasma current; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:C
- name :
- efm/plasma_currc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(C)
- units :
- A
- uuid :
- 740b5611-77cc-53be-ad21-de424871e0ce
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_rz(time, z, r)float32dask.array<chunksize=(32, 33, 65), meta=np.ndarray>
- description :
- Plasma current density as a function of R and Z; f(nw, nh, B)
- dims :
- ['time', 'z', 'r']
- file_name :
- None
- format :
- None
- label :
- J(r,z)
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:R_Z
- name :
- efm/plasma_currrz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [53, 65, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(R,Z)
- units :
- A / m ** 2
- uuid :
- 5ec0f335-5ffa-5ca7-93d5-96de6b502716
- version :
- 0
Array Chunk Bytes 1.03 MiB 268.12 kiB Shape (64, 65, 65) (32, 33, 65) Dask graph 4 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_x(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Input (experimental) fitted total plasma current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:X
- name :
- efm/plasma_currx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(X)
- units :
- A
- uuid :
- 0ea726da-5408-5571-ae9c-09c19d4d90b0
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_energy(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma thermal energy; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Thermal Energy:3/
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:ENERGY
- name :
- efm/plasma_energy
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_ENERGY
- units :
- J
- uuid :
- fc9e39da-b835-5341-afc8-99da9cf8619f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_volume(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma volume; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Volume
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:VOLUME
- name :
- efm/plasma_volume
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_VOLUME
- units :
- m ** 3
- uuid :
- da7eba13-6ac7-5a5a-a778-b87ad1ba5b38
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pol_length(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Poloidal lengths of flux surfaces as a function of flux; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol lengths of flux surf
- mds_name :
- \TOP.ANALYSED.EFM:POL_LENGTH
- name :
- efm/pol_length
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_POL_LENGTH
- units :
- m
- uuid :
- 455da776-f151-5810-b1d4-4311ab40d837
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- p' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME
- name :
- efm/pprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME
- units :
- Pa-rad/Wb
- uuid :
- 21825a09-c80c-5056-818b-a11af9f3093e
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime_coefs(time, pprime_coefs_n)float32dask.array<chunksize=(64, 2), meta=np.ndarray>
- description :
- p' polynomial coefficients
- dims :
- ['time', 'pprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME_COEFS
- name :
- efm/pprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 2]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME_COEFS
- units :
- uuid :
- 5a98f10c-95be-504a-ba03-750f5793ba43
- version :
- 0
Array Chunk Bytes 512 B 512 B Shape (64, 2) (64, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprimew(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Rotational pressure contribution profile; f(nw, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- prpime(rot) (centre to e
- mds_name :
- \TOP.ANALYSED.EFM:PPRIMEW
- name :
- efm/pprimew
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIMEW
- units :
- Pa-ra/Wb
- uuid :
- c6ed9eae-b2cd-591c-bd3d-e8cc6633a119
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ppsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Pressure as a function of flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed press (centre t
- mds_name :
- \TOP.ANALYSED.EFM:P_PSI_C
- name :
- efm/ppsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(PSI)_(C)
- units :
- Pa
- uuid :
- 0d710474-d92e-5992-a3d1-c4caf144787f
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pr_c(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Pressure as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (total)
- mds_name :
- \TOP.ANALYSED.EFM:P_R_C
- name :
- efm/pr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(R)_(C)
- units :
- Pa
- uuid :
- 85371d6c-9f6f-5b74-95d1-45770328718c
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux on axis
- mds_name :
- \TOP.ANALYSED.EFM:PSI_AXIS
- name :
- efm/psi_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_AXIS
- units :
- Wb / rad
- uuid :
- 6cfc8f31-91bf-5b61-bf45-f343591f5f74
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_boundary(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the plasma boundary; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux at boundar
- mds_name :
- \TOP.ANALYSED.EFM:PSI_BOUNDARY
- name :
- efm/psi_boundary
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_BOUNDARY
- units :
- Wb / rad
- uuid :
- 26637893-a225-5955-8178-02b9c355d65f
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psir(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R
- name :
- efm/psir
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R)
- units :
- uuid :
- 93e3561c-98bd-5c1c-abf7-2d2a22b38981
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psirz(time, profile_z, profile_r)float32dask.array<chunksize=(32, 33, 65), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius and height; f(nw, nh, B)
- dims :
- ['time', 'profile_z', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r,z)
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R_Z
- name :
- efm/psirz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [64, 65, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R,Z)
- units :
- Wb / rad
- uuid :
- 91ea7bbe-13ee-5851-864f-df59228f161e
- version :
- 0
Array Chunk Bytes 2.05 MiB 268.12 kiB Shape (64, 65, 129) (32, 33, 65) Dask graph 8 chunks in 2 graph layers Data type float32 numpy.ndarray - pwpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Rotational pressure flux function p_omega as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed rotational pres
- mds_name :
- \TOP.ANALYSED.EFM:PW_PSI_C
- name :
- efm/pwpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PW(PSI)_(C)
- units :
- Pa
- uuid :
- b8a7c5db-ad2b-53a8-b885-0ca03ec33139
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=1_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=1 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=1 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_1_RADIUS
- name :
- efm/q=1_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=1_RADIUS
- units :
- m
- uuid :
- 12b1f760-a042-511b-878d-f34f789db876
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=2_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=2 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=2 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_2_RADIUS
- name :
- efm/q=2_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=2_RADIUS
- units :
- m
- uuid :
- 6b77e0bd-35fd-5291-952c-14d87efb36c2
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=3_radius(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- For q=3 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=3 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_3_RADIUS
- name :
- efm/q=3_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=3_RADIUS
- units :
- m
- uuid :
- faa09b4a-f9e3-56a8-8bec-379a5821a585
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_100(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=100%
- mds_name :
- \TOP.ANALYSED.EFM:Q_100
- name :
- efm/q_100
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_100
- units :
- uuid :
- 8041cdce-59ec-54f5-9769-6b4fbccb8e8b
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_90(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=90%
- mds_name :
- \TOP.ANALYSED.EFM:Q_90
- name :
- efm/q_90
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_90
- units :
- uuid :
- 51ab04a6-35f3-5ebb-8cd9-9bc1be4de4e9
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_95(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=95%
- mds_name :
- \TOP.ANALYSED.EFM:Q_95
- name :
- efm/q_95
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_95
- units :
- uuid :
- 18b9439c-e71e-5ce6-b3b4-b9dbe2a08caf
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_axis(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Safety factor at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q on Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM:Q_AXIS
- name :
- efm/q_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_AXIS
- units :
- uuid :
- 2bd0863c-2e4b-535a-b39f-0a7e5e44c5ca
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Safety factor as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- q-profile (centre to edg
- mds_name :
- \TOP.ANALYSED.EFM:Q_PSI_C
- name :
- efm/qpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(PSI)_(C)
- units :
- uuid :
- 0387c7e0-76d1-5107-bd2c-6292db62098b
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qr(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Safety factor as a function of radius at Z=0; f(npsi, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- q(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:Q_R
- name :
- efm/qr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(R)
- units :
- uuid :
- dc5c59c6-c842-5747-98db-d0495738576a
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qstar(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- qstar = fvac*(kappa^2+1)/(4e-7 I_p A^2)*(1.24-0.54*kappa+0.3*(kappa^2+triangn^2)+0.13*triangn )*(1 + (1+0.5*(betap+li/2)^2)/A^2); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q-star
- mds_name :
- \TOP.ANALYSED.EFM:QSTAR
- name :
- efm/qstar
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_QSTAR
- units :
- uuid :
- 5d69b017-2bc4-50d9-b998-b30b531dbb48
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- rbdry
- mds_name :
- \TOP.ANALYSED.EFM:RBDRY
- name :
- efm/rbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RBDRY
- units :
- m
- uuid :
- 6fcf7493-9ffc-54a5-b8af-00390405aa87
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_IN
- name :
- efm/rpsi100_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_IN
- units :
- m
- uuid :
- c9d75e73-3990-5c0b-be27-968f224e696c
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_OUT
- name :
- efm/rpsi100_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_OUT
- units :
- m
- uuid :
- 5a30e41a-d1a1-5fa5-bada-7367488a5f0e
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_IN
- name :
- efm/rpsi90_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_IN
- units :
- m
- uuid :
- 1bf651e5-0abe-5c57-acba-c8d43c8d9123
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_OUT
- name :
- efm/rpsi90_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_OUT
- units :
- m
- uuid :
- 55d05ed7-7e40-5c77-b667-44792d2caa43
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_in(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Inboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_IN
- name :
- efm/rpsi95_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_IN
- units :
- m
- uuid :
- 316e719b-be8e-53a9-b685-1718e5a49277
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_out(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Outboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_OUT
- name :
- efm/rpsi95_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_OUT
- units :
- m
- uuid :
- 3623b161-4b17-53b0-ae72-f753ed33cccc
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rt(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral RT
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_RT
- mds_name :
- \TOP.ANALYSED.EFM:RT
- name :
- efm/rt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RT
- units :
- m
- uuid :
- fd127bbd-fba3-5805-9261-4cd3039005cb
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvals(time, profile_r)float32dask.array<chunksize=(64, 129), meta=np.ndarray>
- description :
- Radial co-ordinates used for radial profiles; f(nw)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- R-coords used for radial
- mds_name :
- \TOP.ANALYSED.EFM:RVALS
- name :
- efm/rvals
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVALS
- units :
- uuid :
- 48050b25-9e92-5383-8d90-e4ca0e3e147d
- version :
- 0
Array Chunk Bytes 32.25 kiB 32.25 kiB Shape (64, 129) (64, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvtor()float32...
- description :
- Rotational pressure parameter
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- rotational constraint co
- mds_name :
- \TOP.ANALYSED.EFM:RVTOR
- name :
- efm/rvtor
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVTOR
- units :
- uuid :
- 241f7ddc-2c87-50fd-979f-d525aaeb10dc
- version :
- 0
[1 values with dtype=float32]
- scalepr()float32...
- description :
- Constant to scale input pressure by
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- pressure scaling factor
- mds_name :
- \TOP.ANALYSED.EFM:SCALEPR
- name :
- efm/scalepr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SCALEPR
- units :
- uuid :
- 59c7da09-4c25-54c9-be48-6484481d2c03
- version :
- 0
[1 values with dtype=float32]
- shaf_integral_1(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 1
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_1
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_1
- name :
- efm/shaf_integral_1
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_1
- units :
- uuid :
- 21798555-7f56-5b17-85ce-a5cc45a78c3b
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_2(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 2
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_2
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_2
- name :
- efm/shaf_integral_2
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_2
- units :
- uuid :
- dcd63312-5b11-5006-bd8d-ed9e52ae6f50
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_3(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Shafranov integral 3
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_3
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_3
- name :
- efm/shaf_integral_3
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_3
- units :
- uuid :
- 90d2aad4-fa1e-555a-b453-f13942a220cb
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - sigbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Relative position error on boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- sigbdry
- mds_name :
- \TOP.ANALYSED.EFM:SIGBDRY
- name :
- efm/sigbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SIGBDRY
- units :
- uuid :
- b8ac0e0b-7ce3-52e3-a21d-467967091e70
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_c(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Computed flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_C
- name :
- efm/silop_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(C)
- units :
- Wb
- uuid :
- 6f143c44-8c86-5c6f-83c0-35e7f301b744
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_chisq(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic flux probe; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each flux loop
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_CHISQ
- name :
- efm/silop_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_CHISQ
- units :
- uuid :
- 36edf804-c067-5b55-aa93-c9d9ecc58fe8
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_dphi(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Toroidal angular extent of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Toroidal Exten
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_DPHI
- name :
- efm/silop_dphi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_DPHI
- units :
- m
- uuid :
- 5cf990ab-ed3f-5d66-a7c6-4132fa2a317a
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_r(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- R of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Radiu
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_R
- name :
- efm/silop_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_R
- units :
- m
- uuid :
- 856165b2-670a-5ab4-8575-b37ff70e3f1d
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_x(time, psi_loop_n)float32dask.array<chunksize=(64, 46), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Measured flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_X
- name :
- efm/silop_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [64, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(X)
- units :
- Wb
- uuid :
- 8791ad66-9c81-5288-b312-2458557608bb
- version :
- 0
Array Chunk Bytes 11.50 kiB 11.50 kiB Shape (64, 46) (64, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_z(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Z of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Heigh
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_Z
- name :
- efm/silop_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_Z
- units :
- m
- uuid :
- 5d60facb-c6d0-55b7-9548-c0e8be2e5a78
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - status()float64...
- description :
- MAST scheduler status
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- MAST Status flag
- mds_name :
- \TOP.ANALYSED.EFM:STATUS
- name :
- efm/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_STATUS
- units :
- uuid :
- 255ae97c-f9a9-54a1-8bd7-b9e7c955e23f
- version :
- 0
[1 values with dtype=float64]
- time_(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_CNVRGD_TIMES
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:TIME
- name :
- efm/time_
- quality :
- Not Checked
- rank :
- 1
- shape :
- [64]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TIME
- units :
- s
- uuid :
- e7248f5d-a27a-59ce-ada3-1f56e2e088f7
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lower(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Lower plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Lower Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_LOWER
- name :
- efm/triang_lower
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_LOWER
- units :
- uuid :
- 72bf53f4-5ecb-5a52-bd39-b860fd55ef14
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lpsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Lower plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- lower delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_L:PSI_C
- name :
- efm/triang_lpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_L(PSI)_(C)
- units :
- uuid :
- 89187327-4026-5ad4-b2d9-e52fa6d4f243
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upper(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Upper plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Upper Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_UPPER
- name :
- efm/triang_upper
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_UPPER
- units :
- uuid :
- 4664260a-ff20-5e3a-bf62-61fd6a476805
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upsi_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Upper plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- upper delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_U:PSI_C
- name :
- efm/triang_upsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_U(PSI)_(C)
- units :
- uuid :
- 1b84c3fe-20a5-5cfe-b5c4-8c5c08b26487
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - volp_c(time, psi_norm)float32dask.array<chunksize=(64, 65), meta=np.ndarray>
- description :
- Plasma volume enclosed by flux surfaces as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- vol within psi surfaces
- mds_name :
- \TOP.ANALYSED.EFM:VOLP_C
- name :
- efm/volp_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [53, 65]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_VOLP_(C)
- units :
- m ** 3
- uuid :
- e54fe482-f3f6-5b78-b1f1-22c4ce76a943
- version :
- 0
Array Chunk Bytes 16.25 kiB 16.25 kiB Shape (64, 65) (64, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wcurbd()float32...
- description :
- pw' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- P(Rot) Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:WCURBD
- name :
- efm/wcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WCURBD
- units :
- uuid :
- 0856f852-b925-551c-90ae-4093dc73a02a
- version :
- 0
[1 values with dtype=float32]
- wplasmd(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Plasma energy computed using diamagnetic energy, as in betapd
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Diamagnetic Energ
- mds_name :
- \TOP.ANALYSED.EFM:WPLASMD
- name :
- efm/wplasmd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPLASMD
- units :
- J
- uuid :
- 92ab9f43-0de5-581b-a883-c6bc10b8dfed
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wpol(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Poloidal part of magnetic energy in plasma; vol avg Bp^2 / 2 mu0; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Wpol
- mds_name :
- \TOP.ANALYSED.EFM:WPOL
- name :
- efm/wpol
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPOL
- units :
- J
- uuid :
- acec52d6-372a-5a00-854e-d6d6b8dca1f5
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_R_C
- name :
- efm/xpoint1_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_R(C)
- units :
- m
- uuid :
- eccf57c6-d71d-5cdd-b999-3dc464f12401
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_Z_C
- name :
- efm/xpoint1_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_Z(C)
- units :
- m
- uuid :
- 319404d2-10f1-5c26-87ee-3149180db242
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_rc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Radius of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_R_C
- name :
- efm/xpoint2_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_R(C)
- units :
- m
- uuid :
- c56187f6-bdd6-52d9-966f-c828b7b56877
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_zc(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_Z_C
- name :
- efm/xpoint2_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_Z(C)
- units :
- m
- uuid :
- 5c417167-69c9-5c80-93b1-8935ff84efa4
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - zbdry(time)float32dask.array<chunksize=(64,), meta=np.ndarray>
- description :
- Height of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- zbdry
- mds_name :
- \TOP.ANALYSED.EFM:ZBDRY
- name :
- efm/zbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [53]
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ZBDRY
- units :
- m
- uuid :
- d2e90be2-8873-55b5-a642-52a4b2b95ce4
- version :
- 0
Array Chunk Bytes 256 B 256 B Shape (64,) (64,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- fcoil_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0], dtype='float32', name='fcoil_n', length=101))
- ffprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='ffprime_coefs_n'))
- lcfs_coordsPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 137.0, 138.0, 139.0, 140.0, 141.0, 142.0, 143.0, 144.0, 145.0, 146.0], dtype='float32', name='lcfs_coords', length=147))
- mag_probe_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0], dtype='float32', name='mag_probe_n'))
- n_iterationsPandasIndex
PandasIndex(Index([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype='float32', name='n_iterations'))
- pprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='pprime_coefs_n'))
- profile_rPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.05999999865889549, 0.0625, 0.078125, 0.09031249582767487, 0.09375, 0.109375, ... 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='profile_r', length=129))
- profile_zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='profile_z'))
- psi_loop_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0], dtype='float32', name='psi_loop_n'))
- psi_normPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.0625, 0.078125, 0.09375, 0.109375, 0.125, 0.140625, 0.15625, 0.171875, 0.1875, 0.203125, 0.21875, 0.234375, 0.25, 0.265625, 0.28125, 0.296875, 0.3125, 0.328125, 0.34375, 0.359375, 0.375, 0.390625, 0.40625, 0.421875, 0.4375, 0.453125, 0.46875, 0.484375, 0.5, 0.515625, 0.53125, 0.546875, 0.5625, 0.578125, 0.59375, 0.609375, 0.625, 0.640625, 0.65625, 0.671875, 0.6875, 0.703125, 0.71875, 0.734375, 0.75, 0.765625, 0.78125, 0.796875, 0.8125, 0.828125, 0.84375, 0.859375, 0.875, 0.890625, 0.90625, 0.921875, 0.9375, 0.953125, 0.96875, 0.984375, 1.0], dtype='float32', name='psi_norm'))
- rPandasIndex
PandasIndex(Index([0.05999999865889549, 0.09031249582767487, 0.12062500417232513, 0.1509374976158142, 0.18125000596046448, 0.21156251430511475, 0.24187500774860382, 0.2721875011920929, 0.30250000953674316, 0.33281251788139343, 0.3631250262260437, 0.3934375047683716, 0.42375001311302185, 0.4540625214576721, 0.484375, 0.5146874785423279, 0.5450000166893005, 0.5753124952316284, 0.6056250333786011, 0.635937511920929, 0.6662500500679016, 0.6965625286102295, 0.7268750071525574, 0.75718754529953, 0.7875000238418579, 0.8178125023841858, 0.8481250405311584, 0.8784375190734863, 0.9087499976158142, 0.9390625357627869, 0.9693750143051147, 0.9996875524520874, 1.0299999713897705, 1.0603125095367432, 1.0906249284744263, 1.120937466621399, 1.1512500047683716, 1.1815624237060547, 1.2118749618530273, 1.2421875, 1.2725000381469727, 1.3028124570846558, 1.3331249952316284, 1.363437533378601, 1.3937499523162842, 1.4240624904632568, 1.4543750286102295, 1.4846874475479126, 1.5149999856948853, 1.545312523841858, 1.575624942779541, 1.6059374809265137, 1.6362500190734863, 1.6665624380111694, 1.696874976158142, 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='r'))
- timePandasIndex
PandasIndex(Index([ -0.04999999701976776, -0.044999998062849045, -0.03999999910593033, -0.03500000014901161, -0.029999999329447746, -0.02499999850988388, -0.019999999552965164, -0.014999999664723873, -0.009999999776482582, -0.004999999888241291, 0.0, 0.03999999910593033, 0.044999998062849045, 0.04999999701976776, 0.054999999701976776, 0.05999999865889549, 0.06499999761581421, 0.07000000029802322, 0.07499999552965164, 0.07999999821186066, 0.08500000089406967, 0.08999999612569809, 0.0949999988079071, 0.09999999403953552, 0.10499999672174454, 0.10999999940395355, 0.11499999463558197, 0.11999999731779099, 0.125, 0.12999999523162842, 0.13499999046325684, 0.14000000059604645, 0.14499999582767487, 0.14999999105930328, 0.1550000011920929, 0.1599999964237213, 0.16499999165534973, 0.17000000178813934, 0.17499999701976776, 0.17999999225139618, 0.1850000023841858, 0.1899999976158142, 0.19499999284744263, 0.19999998807907104, 0.20499999821186066, 0.20999999344348907, 0.2149999886751175, 0.2199999988079071, 0.22499999403953552, 0.22999998927116394, 0.23499999940395355, 0.23999999463558197, 0.2449999898672104, 0.25, 0.2549999952316284, 0.25999999046325684, 0.26499998569488525, 0.26999998092651367, 0.2750000059604645, 0.2800000011920929, 0.2849999964237213, 0.28999999165534973, 0.29499998688697815, 0.29999998211860657], dtype='float32', name='time'))
- zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='z'))
- description :
- Basic EFIT
- file_name :
- efm0304.20
- format :
- IDA3
- mds_name :
- None
- name :
- efm
- quality :
- Not Checked
- shot_id :
- 30420
- signal_type :
- Analysed
- source :
- efm
- uda_name :
- EFM
- uuid :
- 1e39c600-8ffb-5f56-900d-2941e352319c
- version :
- 0
time_index = 50
plasma_current = dataset['plasma_current_rz'].dropna(dim='time')
plasma_current = plasma_current.isel(time=time_index)
polodial_flux_rz = dataset['psirz']
polodial_flux_rz = polodial_flux_rz.dropna(dim='profile_r')
polodial_flux_rz = polodial_flux_rz.isel(time=time_index)
lcfs_R = dataset['lcfs_r'].isel(time=time_index)
lcfs_Z = dataset['lcfs_z'].isel(time=time_index)
# Get the R and Z coordinates of the profiles.
r = dataset['r']
z = dataset['z']
R, Z = np.meshgrid(r, z)
# Get the x-point
xpoint_r = dataset['xpoint2_rc'][time_index]
xpoint_z = dataset['xpoint2_zc'][time_index]
# Get the current centre
mag_axis_r = dataset['current_centrd_r'][time_index]
mag_axis_z = dataset['current_centrd_z'][time_index]
# Get the last closed flux surface (LCFS)
lcfs_r = lcfs_R.values
lcfs_r = lcfs_r[~np.isnan(lcfs_r)]
lcfs_z = lcfs_Z.values
lcfs_z = lcfs_z[~np.isnan(lcfs_z)]
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.contourf(R, Z, polodial_flux_rz, cmap='magma', levels=50, label='Polodial Flux')
ax1.scatter(xpoint_r, xpoint_z, marker='x', color='green', label='X Point')
ax1.scatter(mag_axis_r, mag_axis_z, marker='o', color='purple', label='Current Centre')
ax1.plot(lcfs_r, lcfs_z, c='blue', linestyle='--', label='LCFS')
ax1.set_title(f'Polodial Flux for Shot {polodial_flux_rz.attrs["shot_id"]}')
ax1.set_ylabel('Z (m)')
ax1.set_xlabel('R (m)')
ax2.contourf(R, Z, plasma_current, cmap='magma', levels=20, label='Plasma Current')
ax2.scatter(xpoint_r, xpoint_z, marker='x', color='green', label='X Point')
ax2.scatter(mag_axis_r, mag_axis_z, marker='o', color='purple', label='Current Centre')
ax2.plot(lcfs_r, lcfs_z, c='blue', linestyle='--', label='LCFS')
ax2.set_title(f'Plasma Current for Shot {plasma_current.attrs["shot_id"]}')
plt.ylabel('Z (m)')
plt.xlabel('R (m)')
plt.legend()
plt.tight_layout()
/var/folders/xr/yr8z575s52b4tbg3fj65qwx00000gp/T/ipykernel_88474/494923854.py:34: UserWarning: The following kwargs were not used by contour: 'label'
ax1.contourf(R, Z, polodial_flux_rz, cmap='magma', levels=50, label='Polodial Flux')
/var/folders/xr/yr8z575s52b4tbg3fj65qwx00000gp/T/ipykernel_88474/494923854.py:42: UserWarning: The following kwargs were not used by contour: 'label'
ax2.contourf(R, Z, plasma_current, cmap='magma', levels=20, label='Plasma Current')