Thomson Scattering Data

!pip install pandas matplotlib zarr fsspec s3fs intake intake_xarray intake_parquet
Hide code cell output
Requirement already satisfied: pandas in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.3)
Requirement already satisfied: matplotlib in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (3.9.0)
Requirement already satisfied: zarr in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.15.0)
Requirement already satisfied: fsspec in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: s3fs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: intake in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.5)
Requirement already satisfied: intake_xarray in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.7.0)
Requirement already satisfied: intake_parquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (0.3.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (1.25.2)
Requirement already satisfied: contourpy>=1.0.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: asciitree in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.3.3)
Requirement already satisfied: fasteners in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.19)
Requirement already satisfied: numcodecs>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr) (0.12.1)
Requirement already satisfied: aiobotocore<3.0.0,>=2.5.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (2.13.0)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (3.9.5)
Requirement already satisfied: pyyaml in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (6.0.1)
Requirement already satisfied: appdirs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake) (1.4.4)
Requirement already satisfied: xarray>=02022 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2023.7.0)
Requirement already satisfied: dask>=2.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2024.4.1)
Requirement already satisfied: netcdf4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.6.4)
Requirement already satisfied: msgpack in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (1.0.8)
Requirement already satisfied: requests in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_xarray) (2.31.0)
Requirement already satisfied: fastparquet in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (2024.11.0)
Requirement already satisfied: pyarrow in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from intake_parquet) (12.0.1)
Requirement already satisfied: botocore<1.34.107,>=1.34.70 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.34.106)
Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.16.0)
Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (0.11.0)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (23.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.9.4)
Requirement already satisfied: click>=8.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (8.1.5)
Requirement already satisfied: cloudpickle>=1.5.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (3.0.0)
Requirement already satisfied: partd>=1.2.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (1.4.2)
Requirement already satisfied: toolz>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (0.12.1)
Requirement already satisfied: importlib-metadata>=4.13.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from dask>=2.2->intake_xarray) (7.1.0)
Requirement already satisfied: six>=1.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: cramjam>=2.3 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from fastparquet->intake_parquet) (2.9.0)
Requirement already satisfied: cftime in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (1.6.3)
Requirement already satisfied: certifi in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from netcdf4->intake_xarray) (2024.2.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from requests->intake_xarray) (2.2.1)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (1.0.1)
Requirement already satisfied: zipp>=0.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from importlib-metadata>=4.13.0->dask>=2.2->intake_xarray) (3.18.1)
Requirement already satisfied: locket in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from partd>=1.2.0->dask>=2.2->intake_xarray) (1.0.0)
import intake
import matplotlib.pyplot as plt

plt.rcParams["font.family"] = "sans"
plt.rcParams["font.size"] = 8

First let’s take a look at the top level shots. In this table we can find all of the metadata we have about particular shots.

catalog  = intake.open_catalog('https://mastapp.site/intake/catalog.yml')
shots_df = catalog.index.level1.shots().read()
shots_df
url preshot_description postshot_description campaign current_range divertor_config plasma_shape comissioner facility shot_id ... cpf_vol_ipmax cpf_vol_max cpf_vol_truby cpf_wmhd_ipmax cpf_wmhd_max cpf_wmhd_truby cpf_zeff_ipmax cpf_zeff_max cpf_zeff_truby cpf_zmag_efit
0 s3://mast/level1/shots/11695.zarr \n0.1T TF SHOT\n \nOK\n M5 None Conventional None None MAST 11695 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 s3://mast/level1/shots/11696.zarr \nSTANDARD 0.3T TF SHOT\n \nOK\n M5 None Conventional None None MAST 11696 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 s3://mast/level1/shots/11697.zarr \nRAISE TO 0.5T\n \nOK, ALARMS ARE LOWER\n M5 None Conventional None None MAST 11697 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 s3://mast/level1/shots/11698.zarr \nRAISE TO .56T\n \nSTILL ALARMS BUT LOWER AGAIN\n M5 None Conventional None None MAST 11698 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 s3://mast/level1/shots/11699.zarr \nRAISE TO .58T\n \nOK\n M5 None Conventional None None MAST 11699 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
15916 s3://mast/level1/shots/30467.zarr \nRepeat with new neutron camera position.\ncH... \nTwo times lower DD neutron rate than referen... M9 700 kA Conventional Connected Double Null None MAST 30467 ... 9.029202 9.046394 0.0 49469.122469 52653.445 0.0 NaN NaN NaN 0.013202
15917 s3://mast/level1/shots/30468.zarr \nRepeat with new neutron camera position.\ncH... \nGood beam.\nGood repeat.\n M9 700 kA Conventional Lower Single Null None MAST 30468 ... 9.102411 9.107017 0.0 48516.962675 49382.133 0.0 NaN NaN NaN 0.012445
15918 s3://mast/level1/shots/30469.zarr \nRepeat with increased beam power (74 kV)\ncH... \nGood shot. Modes present.\n M9 700 kA Conventional Connected Double Null None MAST 30469 ... 8.988730 9.047923 0.0 47466.249616 49115.805 0.0 NaN NaN NaN 0.015299
15919 s3://mast/level1/shots/30470.zarr \nRepeat last using hydrogen in outboard and c... \nNo HF gas.\n M9 700 kA Conventional None None MAST 30470 ... 9.687049 10.055509 0.0 17290.432865 22310.516 0.0 NaN NaN NaN 0.015164
15920 s3://mast/level1/shots/30471.zarr \nThe last plasma:\nConvert to i/b Helios 1724... \nGood shot.\n M9 700 kA Conventional Lower Single Null None MAST 30471 ... 8.817559 9.283702 0.0 38063.582380 40906.090 0.0 NaN NaN NaN 0.014340

15921 rows × 283 columns

Thomson Scattering Data#

This notebook contains some examples of loading and plotting Thomson scattering data.

First we can have a look at how many thompson scattering sources are in the database:

catalog  = intake.open_catalog('https://mastapp.site/intake/catalog.yml')
sources_df = catalog.index.level1.sources().read()

# Can also use name == 'aye' for thompson scattering edge data.
sources_df = sources_df.loc[(sources_df.name == 'ayc')]
sources_df
description quality uuid shot_id name url
163486 Core Thomson scattering data Not Checked a61fdefa-e7e9-57df-a7f3-a341f737bcdd 23001 ayc s3://mast/level1/shots/23001.zarr/ayc
163689 Core Thomson scattering data Not Checked a654a084-97f5-52f5-99d6-4e726880b39a 23018 ayc s3://mast/level1/shots/23018.zarr/ayc
164159 Core Thomson scattering data Not Checked 3cca7bc2-9c91-5bd9-a1cd-939142a84cd2 23133 ayc s3://mast/level1/shots/23133.zarr/ayc
164189 Core Thomson scattering data Not Checked 6fd9ab2f-ca5f-57a2-ba81-589cf6efe7d5 23135 ayc s3://mast/level1/shots/23135.zarr/ayc
164204 Core Thomson scattering data Not Checked 5334374c-8f9a-5437-aa56-822448ea5d27 23136 ayc s3://mast/level1/shots/23136.zarr/ayc
... ... ... ... ... ... ...
307980 Core Thomson scattering data Not Checked 1d345219-99c7-5725-9d65-2c9d455b629c 30467 ayc s3://mast/level1/shots/30467.zarr/ayc
308015 Core Thomson scattering data Not Checked 9ac2f540-8845-5c5a-8932-7634b7834d40 30468 ayc s3://mast/level1/shots/30468.zarr/ayc
308050 Core Thomson scattering data Not Checked d07dc339-1510-525c-9fa9-015900101656 30469 ayc s3://mast/level1/shots/30469.zarr/ayc
308085 Core Thomson scattering data Not Checked fa9b2d5d-348b-5e00-a4d5-fc5e39d75452 30470 ayc s3://mast/level1/shots/30470.zarr/ayc
308120 Core Thomson scattering data Not Checked 113ec983-6e14-5e41-8111-aadb0f744471 30471 ayc s3://mast/level1/shots/30471.zarr/ayc

4665 rows × 6 columns

Let’s look at the data for a particular shot. Here we are going to use shot 30420 as an example. Below we get the url for the ayc data.

shot_id = 30420
url = sources_df.loc[sources_df.shot_id == shot_id].iloc[0].url
url
's3://mast/level1/shots/30420.zarr/ayc'

Thomson Scattering Data#

ayc source holds the Thomson Scattering data at the core. Thomson scattering diagnostics provide accurate measurements of electron temperature and density.

dataset = catalog.level1.sources(url=url)
dataset = dataset.to_dask()

dataset
<xarray.Dataset>
Dimensions:              (acqiris_time: 73, radial_index: 131, arb: 130,
                          time: 73, spectral_index: 4, instrument_time: 20,
                          time_segment: 73, xyc_time: 73)
Coordinates:
  * acqiris_time         (acqiris_time) float32 0.0 1.0 2.0 ... 70.0 71.0 72.0
  * arb                  (arb) float32 0.0 1.0 2.0 3.0 ... 127.0 128.0 129.0
  * instrument_time      (instrument_time) float32 1.0 2.0 3.0 ... 19.0 20.0
  * radial_index         (radial_index) float32 0.0 1.0 2.0 ... 129.0 130.0
  * spectral_index       (spectral_index) float32 1.0 2.0 3.0 4.0
  * time                 (time) float32 0.004166 0.008332 0.0125 ... 0.3 0.3042
  * xyc_time             (xyc_time) float32 0.0 1.0 2.0 3.0 ... 70.0 71.0 72.0
Dimensions without coordinates: time_segment
Data variables: (12/36)
    acqiris_time_        (acqiris_time) float32 dask.array<chunksize=(73,), meta=np.ndarray>
    angle                (radial_index) float32 dask.array<chunksize=(131,), meta=np.ndarray>
    aspectra             (time, radial_index, spectral_index) float32 dask.array<chunksize=(73, 131, 4), meta=np.ndarray>
    chi2                 (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray>
    covariance_ne_te     (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray>
    instrument_dr        (instrument_time, radial_index) float32 dask.array<chunksize=(20, 131), meta=np.ndarray>
    ...                   ...
    te_error             (time, radial_index) float32 dask.array<chunksize=(73, 131), meta=np.ndarray>
    version_fibre        float32 ...
    version_poly         float32 ...
    version_raman        float32 ...
    xyc_time_            (xyc_time) float32 dask.array<chunksize=(73,), meta=np.ndarray>
    yag_nelint           (time) float32 dask.array<chunksize=(73,), meta=np.ndarray>
Attributes:
    description:  Core Thomson scattering data
    file_name:    ayc0304.20
    format:       IDA3
    mds_name:     None
    name:         ayc
    quality:      Not Checked
    shot_id:      30420
    signal_type:  Analysed
    source:       ayc
    uda_name:     AYC
    uuid:         8d043ece-8bf8-5af8-87e4-d2a1b01716fa
    version:      0
fig, axes = plt.subplots(2,1)
ax1, ax2 = axes

ax1.plot(dataset['time'], dataset['te_core'])
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Core Temperature (eV)')

ax2.plot(dataset['time'], dataset['ne_core'])
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Peak Core Electron Density ($1 / m^3$)')

for ax in axes:
    ax.grid(alpha=0.3)

plt.tight_layout()
_images/b328d635e94966789292df52254063ca07d6e71a38fbcc25adf4530234698fd0.png

2D Thomson Profiles#

The dataset also includes 2D Thomson scattering profles as a function of time and angle/distance.

fig, (ax1, ax2) = plt.subplots(2, 1)
dataset = catalog.level1.sources(url=url)
dataset = dataset.to_dask()

tmax = dataset['te_core'].dropna(dim='time').time.max()

ds = dataset.copy()

te = ds['te']
te = te.sel(time=te.time <= tmax)
te = te.fillna(0)
te.plot.imshow(ax=ax1, vmax=1000)
ax1.set_title('Temperature ($T_e$)')

ne = ds['ne']
ne = ne.sel(time=ne.time <= tmax)
ne = ne.fillna(0)
ne.plot.imshow(ax=ax2, vmax=1e20)
ax2.set_title('Density ($n_e$)')

ax1.grid(False)
ax2.grid(False)
plt.tight_layout()
_images/bb3439d2605c0987d8ff5fef41383462885155f18312b48fdc67080ccc29b512.png