ECRH with Cutoff
iefrf/iefrffix
= 13
Input | Description |
---|---|
dene , n_{\text{e}} |
Avergae electron temperature \left[10^{19}\text{m}^{-3}\right] |
te , T_{\text{e}} |
Avergae electron temperature \left[\text{keV}\right] |
rmajor , R_0 |
Major radius \left[\text{m}\right] |
bt , B_{\text{T}} |
Toroidal magnetic field \left[\text{T}\right] |
zeff , Z_{\text{eff}} |
Effective charge |
harnum |
Harmonic number |
mode |
RF mode |
\mathtt{fc} = \frac{\frac{1}{2\pi}eB_{\text{T}}}{m_{\text{e}}}
\mathtt{fp} = \frac{1}{2\pi}\sqrt{\frac{n_{\text{e,19}}e^2}{m_{\text{e}}\epsilon_0}}
Apply effective charge correction from GRAY study
\mathtt{xi_{CD}} = 0.18\left(\frac{4.8}{2+Z_{\text{eff}}}\right)
\mathtt{effrfss} = \frac{\mathtt{xi_{CD}}T_{\text{e}}}{3.27R_0n_{\text{e,19}}}
For the O-mode case:
\mathtt{f_{cutoff}} = \mathtt{fp}
For the X-mode case:
\mathtt{f_{cutoff}} = 0.5\left(\mathtt{fc}+\sqrt{\mathtt{harnum}\times\mathtt{fc}^2+4\mathtt{fp}^2}\right)
Plasma coupling only occurs if the plasma cut-off is below the cyclotron harmonic (a = 0.1). This controls how sharply the transition is reached
\mathtt{cutoff_{factor}} = 0.5\left(1+\tanh\left({\left(\frac{2}{a}\right)((\mathtt{harnum}\times \mathtt{fc} -\mathtt{f_cutoff})/\mathtt{fp -a })}\right)\right)
\text{Current drive efficiency [A/W]} = \mathtt{effrfss} \times \mathtt{cutoff_{factor}}