Skip to content

ECRH with Cutoff

  • iefrf/iefrffix = 13
Input Description
dene, n_{\text{e}} Avergae electron temperature \left[10^{19}\text{m}^{-3}\right]
te, T_{\text{e}} Avergae electron temperature \left[\text{keV}\right]
rmajor, R_0 Major radius \left[\text{m}\right]
bt, B_{\text{T}} Toroidal magnetic field \left[\text{T}\right]
zeff, Z_{\text{eff}} Effective charge
harnum Harmonic number
mode RF mode

\mathtt{fc} = \frac{\frac{1}{2\pi}eB_{\text{T}}}{m_{\text{e}}}
\mathtt{fp} = \frac{1}{2\pi}\sqrt{\frac{n_{\text{e,19}}e^2}{m_{\text{e}}\epsilon_0}}

Apply effective charge correction from GRAY study

\mathtt{xi_{CD}} = 0.18\left(\frac{4.8}{2+Z_{\text{eff}}}\right)
\mathtt{effrfss} = \frac{\mathtt{xi_{CD}}T_{\text{e}}}{3.27R_0n_{\text{e,19}}}

For the O-mode case:

\mathtt{f_{cutoff}} = \mathtt{fp}

For the X-mode case:

\mathtt{f_{cutoff}} = 0.5\left(\mathtt{fc}+\sqrt{\mathtt{harnum}\times\mathtt{fc}^2+4\mathtt{fp}^2}\right)

Plasma coupling only occurs if the plasma cut-off is below the cyclotron harmonic (a = 0.1). This controls how sharply the transition is reached

\mathtt{cutoff_{factor}} = 0.5\left(1+\tanh\left({\left(\frac{2}{a}\right)((\mathtt{harnum}\times \mathtt{fc} -\mathtt{f_cutoff})/\mathtt{fp -a })}\right)\right)
\text{Current drive efficiency [A/W]} = \mathtt{effrfss} \times \mathtt{cutoff_{factor}}

ECRH Cutoff

Figure 1: The variation in current drive efficiency as a function of toroidal magnetic field at different harmonics and modes