Bosch-Hale Methods
These methods are still kept in physics_functions.py
but outside the FusionReactionRate
class.
Bosch-Hale Constants | BoschHaleConstants
The BoschHaleConstants
class is a data structure designed to hold the constants required for the Bosch-Hale calculation for a given fusion reaction. The values for each of the given reactions are given in the original paper1.
Attributes
- bg (float): Represents the Gamow energy parameter.
- mrc2 (float): Represents the reduced mass energy term.
- cc1 (float): Coefficient for the first term in the Bosch-Hale polynomial.
- cc2 (float): Coefficient for the second term in the Bosch-Hale polynomial.
- cc3 (float): Coefficient for the third term in the Bosch-Hale polynomial.
- cc4 (float): Coefficient for the fourth term in the Bosch-Hale polynomial.
- cc5 (float): Coefficient for the fifth term in the Bosch-Hale polynomial.
- cc6 (float): Coefficient for the sixth term in the Bosch-Hale polynomial.
- cc7 (float): Coefficient for the seventh term in the Bosch-Hale polynomial.
Volumetric Fusion Rate | bosch_hale_reactivity()
This function calcualtes the relative velocity fusion reactivity \langle \sigma v \rangle for each point in the plasma profile based on the temperature.
Input Variable | Variable Name |
---|---|
Array of temperature values for the plasma profile | temperature_profile |
Bosch-Hale constants for the specific reaction | reaction_constants |
This will output a numpy array for of the relative velocity fusion reactivity \langle \sigma v \rangle for each point in the temperature profile in units of [\text{m}^3\text{s}^{-1}] After calculation each value is multiplied by 10^{-6} as the original Bosch-Hale calculation1 give the output in [\text{cm}^3\text{s}^{-1}]
Fusion Rate Integral | fusion_rate_integral()
Input Variable | Variable Name |
---|---|
PlasmaProfile object | plasma_profile |
Bosch-Hale constants for the specific reaction | reaction_constants |
This function calculates the integrand for the fusion power integration by evaluating the number of fusion reactions per unit volume per particle volume density [\text{m}^3\text{s}^{-1}]. It scales the ion temperature profile by the ratio of the volume-averaged ion to electron temperature and normalizes the density profile by the volume-averaged density. The resulting integrand is used to compute the volume-averaged fusion reaction rate, which can be scaled with the volume-averaged ion density.
-
Scale Ion Temperature Profile:
- Scale the ion temperature profile by the ratio of the volume-averaged ion to electron temperature.
\mathtt{ion\_temperature\_profile} = \frac{\langle T_{\text{i}} \rangle}{\langle T_{\text{e}} \rangle} \\ \times \mathtt{plasma\_profile.teprofile.profile\_y} -
Calculate Fusion Reactivity:
- Calculate the number of fusion reactions per unit volume per particle volume density using the
bosch_hale_reactivity
function.
\langle \sigma v \rangle = \mathtt{bosch\_hale\_reactivity( \\ ion\_temperature\_profile, reaction\_constants)} - Calculate the number of fusion reactions per unit volume per particle volume density using the
-
Normalize Density Profile:
- Normalize the density profile by the volume-averaged density.
\mathtt{density\_profile\_normalised} = \frac{1}{\langle n_{\text{i}} \rangle} \\ \times \mathtt{plasma\_profile.neprofile.profile\_y} -
Compute and return the Fusion Integral:
- Calculate the volume-averaged fusion reaction integral.
\mathtt{fusion\_integral} =2 \int \langle \sigma v \rangle \times \\ \mathtt{plasma\_profile.teprofile.profile\_x} \times \mathtt{density\_profile\_normalised}^2The above is returned.
-
H.-S. Bosch and G. M. Hale, “Improved formulas for fusion cross-sections and thermal reactivities,”Nuclear Fusion, vol. 32, no. 4, pp. 611–631, Apr. 1992,doi: https://doi.org/10.1088/0029-5515/32/4/i07. ↩↩